中国矿业大学-地下水动力学-实验报告.docx
地下水动力学实验报告 班级:地质10-4班 姓名: 顾 春 生 学号: 05102064 实验一:thise曲线配线法求参一、实验名称配线法求参。二、实验性质必做。三、实验类型验证、研究。四、实验目的掌握配线法求参的原理,并利用EXCEL或者Visual Basic等编程工具进行配线法的编程分,根据抽水试验资料进行水文地质参数计算。五、实验内容5.1. 原理:配线法是地下水动力学中介绍的求取水文地质参数的一大类方法。5.1.2 无补给无限承压含水层完整井非稳定流定流量抽水Theis公式:,配线法:参数计算公式:(曲线 未作处理)曲线:,曲线:,Question表为抽水实验观测数据。t(min)2#s(m)15#s(m)100.730.16201.280.48301.530.54401.720.65601.960.75802.1411002.281.121202.391.221502.541.362102.771.552702.991.73303.11.834003.21.894503.261.986453.472.178703.682.389903.772.4611853.852.54在山西某地一承压含水层中进行抽水,含水层的顶、底板绝对隔水,抽水时侧向边界尚无影响。14号孔为完整抽水井,抽水量为60m3/h。2号观测孔距抽水孔43m,15号观测孔距抽水孔125m。求导水系数和贮水系数。(参考值:T=180m2/d,S=3.7×10-4)5.2.1 Theis井函数求参Theis公式:,文件名:实验一(泰斯曲线.xls) Theis表中包含双对数坐标的配线法图形,A、B列为抽水实验观测数据(单位:min、m)。Q、R、S列分别为标准曲线的1/u、u、W(u),图中的标准曲线即是用Q、S列生成的。横轴、纵轴的偏移量Min、Max分别为双对数坐标的偏移量,向左取负值。Offset为偏移量的对数值,单元格为I24与I26(记为)。单元L23抽水量(),单元L24为观测孔距抽水井径向距离,L25为计算的T值(),L26为计算的值。$L$23为取单元L23的绝对引用。C、D列为A、B列偏移后的数值,E列为计算误差,公式如下:,#2 s-t数据:#2 s-t曲线:分析:#15 s-t数据:#15 s-t曲线:分析:s-t /r*r数据:s-t /r*r曲线:分析:实验二:Hantush-Jacob井函数配线法求参一、实验名称配线法求参。二、实验性质必做。三、实验类型验证、研究。四、实验目的掌握配线法求参的原理,并利用EXCEL或者Visual Basic等编程工具进行配线法的编程分,根据抽水试验资料进行水文地质参数计算。五、实验内容2.1. 原理配线法是地下水动力学中介绍的求取水文地质参数的一大类方法。2.2.1 越流含水层完整井稳定流定流量抽水Hantush-Jacob公式:, 为Bessel函数,可用Excel工程函数库计算,也可利用附录程序BessK0(x)计算。配线法公式:2.2.2 Hantush-Jacob井函数求参2.2.3 越流含水层完整井非稳定流定流量抽水Hantush-Jacob公式:可利用附录程序w(x, y)函数计算(成品见下页)。,2.2.4题目:2.2.5配线需要掌握的过程:井函数计算程序(见末页附录)横轴、纵轴的偏移量Min、Max分别为双对数坐标的偏移量,向左取负值。Offset为偏移量的对数值,单元格为I27与I29(记为)。先移动图形,选择合适的,填入单元L25。单元L26抽水量(),单元L27为观测孔距抽水井径向距离,L28为计算的T值(),L29为计算的值。$L$25为取单元L25的绝对引用。C、D列为A、B列偏移后的数值,E列为计算误差,公式如下:,2.2.6配线结果:曲线:Data表含有不同值的Hantush-Jacob井函数数值表。Hantush-Jacob表中包含双对数坐标的配线法图形,A、B列为抽水实验观测数据,单位为min、m。标准曲线的绘图数据在Data表中。滚动条ScrollBar1、ScrollBar2控制坐标偏移量。2.2.7结果分析:附录:井函数计算程序' This calculates drawdowns for flow to a well from the Theis solution.Function Exp1(x)A0 = -0.57721566a1 = 0.99999193a2 = -0.24991055A3 = 0.05519968A4 = -0.00976004A5 = 0.00107857B0 = 0.2677737343B1 = 8.6347608925B2 = 18.059016973B3 = 8.5733287401B4 = 1c0 = 3.9584969228c1 = 21.0996530827c2 = 25.6329561486c3 = 9.5733223454C4 = 1If x <= 1 Then Exp1 = -Log(x) + A0 + x * (a1 + x * (a2 + x * (A3 + x * (A4 + x * A5)Else p1 = B0 + x * (B1 + x * (B2 + x * (B3 + x * B4) P2 = c0 + x * (c1 + x * (c2 + x * (c3 + x * C4) Exp1 = (p1 / P2) * Exp(-x) / xEnd IfEnd Function' To compute the Hantush leaky-aquifer function W(x,y). Append routines to' compute Exp1(x),ExpInt(n,x),BessK0(x),BessI0(x)and BessI1(x).Function w(x, y)If x = 0 Then w = 2 * BessK0(y)Else r = 1 t = y 2 / (4 * x) b = 2 * x If y <= b Then w = 0 n = 0 Do term = r * ExpInt(n + 1, x) w = w + term n = n + 1 r = r * (-t) / n Loop Until Abs(term) < 0.0000000001 Else w = 2 * BessK0(y) n = 0 Do term = r * ExpInt(n + 1, t) w = w - term n = n + 1 r = r * (-x) / n Loop Until Abs(term) < 0.0000000001 End IfEnd IfEnd Function' To compute the exponential integral of order n for n >=0.Function ExpInt(n, x)If n = 0 Then ExpInt = Exp(-x) / xElseIf n = 1 Then ExpInt = Exp1(x)ElseIf (n > 1) And (x <= 5) Then a = Exp1(x) For i = 2 To n a = (Exp(-x) - x * a) / (i - 1) Next i ExpInt = aElseIf (n > 1) And (x > 5) Then N1 = Int(x) t = x + N1 a = 1 + N1 / t 2 + N1 * (N1 - 2 * x) / t 4 + N1 * (6 * x 2 - 8 * N1 * x + N1 2) / t 6 a = a * Exp(-x) / t If n <= N1 Then i = N1 Do While i > n i = i - 1 a = (Exp(-x) - i * a) / x Loop ExpInt = a Else i = N1 Do While i < n i = i + 1 a = (Exp(-x) - x * a) / (i - 1) Loop ExpInt = a End IfEnd IfEnd Function' To calculate the modified Bessel function K0(x) for 0<x<infinity.Function BessK0(x)A0 = -0.57721566a1 = 0.4227842a2 = 0.23069756A3 = 0.0348859A4 = 0.00262698A5 = 0.0001075A6 = 0.0000074B0 = 1.25331414B1 = -0.07832358B2 = 0.02189568B3 = -0.01062446B4 = 0.00587872B5 = -0.0025154B6 = 0.00053208If x <= 2 Then t = (x / 2) 2 BessK0 = A0 + t * (a1 + t * (a2 + t * (A3 + t * (A4 + t * (A5 + t * A6) BessK0 = BessK0 - Application.Ln(x / 2) * BessI0(x)Else t = 2 / x BessK0 = B0 + t * (B1 + t * (B2 + t * (B3 + t * (B4 + t * (B5 + t * B6) BessK0 = BessK0 * Exp(-x) / Sqr(x)End IfEnd Function' To compute the modified Bessel function I0(x) for 0<x<infinity.Function BessI0(x)A0 = 1a1 = 3.5156229a2 = 3.0899424A3 = 1.2067492A4 = 0.2659732A5 = 0.0360768A6 = 0.0045813B0 = 0.39894228B1 = 0.01328592B2 = 0.00225319B3 = -0.00157565B4 = 0.00916281B5 = -0.02057706B6 = 0.02635537B7 = -0.01647633B8 = 0.00392377If x <= 3.75 Then t = (x / 3.75) 2 BessI0 = A0 + t * (a1 + t * (a2 + t * (A3 + t * (A4 + t * (A5 + t * A6)Else t = 3.75 / x BessI0 = B0 + t * (B1 + t * (B2 + t * (B3 + t * (B4 + t * (B5 + t * (B6 + t * (B7 + t * B8) BessI0 = BessI0 * Exp(x) / Sqr(x)End IfEnd Function