2022高中数学最新优秀教案设计范例精选.docx
2022高中数学最新优秀教案设计范例精选教案是老师进行教学的重要道具,对教学有重要的作用,可以帮助老师更好地把控教学节奏。有了教案,老师可以更好地进行教学,提高自身的教学水平,更好地实现教学目标。优秀的教案设计对老师的帮助是特别大的,这里给大家共享一些优秀的教案设计,供大家参考。中学数学圆锥曲线教案范文一、教学内容分析圆锥曲线的定义反映了圆锥曲线的本质属性,它是多数次实践后的高度抽象.恰当地利用定义解题,很多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来娴熟的解题。二、学生学习状况分析我所任教班级的学生参加课堂教学活动的主动性强,思维活跃,但计算实力较差,推理实力较弱,运用数学语言的表达实力也略显不足。三、设计思想由于这部分学问较为抽象,假如离开感性相识,简单使学生陷入逆境,降低学习热忱.在教学时,借助多媒体动画,引导学生主动发觉问题、解决问题,主动参加教学,在轻松开心的环境中发觉、获得新知,提高教学效率.四、教学目标1.深刻理解并娴熟驾驭圆锥曲线的定义,能敏捷应用定义解决问题;娴熟驾驭焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本学问求解圆锥曲线的方程。2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的实力;通过对问题的不断引申,细心设问,引导学生学习解题的一般方法。3.借助多媒体协助教学,激发学习数学的爱好.五、教学重点与难点:教学重点1.对圆锥曲线定义的理解2.利用圆锥曲线的定义求最值3.定义法求轨迹方程教学难点:巧用圆锥曲线定义解题六、教学过程设计(一)开宗明义,提出问题一上课,我就直截了当地给出——例题1:(1) 已知A(-2,0), B(2,0)动点M满意|MA|+|MB|=2,则点M的轨迹是( )。(A)椭圆 (B)双曲线 (C)线段 (D)不存在(2)已知动点 M(x,y)满意(x1)2(y2)2|3x4y|,则点M的轨迹是( )。(A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线定义是揭示概念的逻辑方法,熟识不同概念的不同定义方式,是学习和探讨数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了肯定的相识,他们是否能真正驾驭它们的本质,是我本节课首先要弄清晰的问题。为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,细心打算了两道练习题。估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分学问的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折—— 假如有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。在对学生们的解答做出推断后,我将把问题引申为:该双曲线的中心坐标是 ,实轴长为 ,焦距为 。以深化对概念的理解。(二)理解定义、解决问题例2 (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910 相内切,求ABC面积的最大值。(2)在(1)的条件下,给定点P(-2,2), 求|PA|运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较简单混淆的一类问题。例2的设置就是为了便利学生的辨析。依据以往的阅历,多数学生看上去都能顺当解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能精确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简洁,因此面对例2(1),多数学生应当能精确给出解答,但是对于例2(2)这样相对比较生疏的问题,学生就无从下手。我提示学生把3/5和离心率联系起来,这样就简单和其次定义联系起来,从而找到解决本题的突破口。(三)自主探究、深化相识假如时间允许,练习题将为学生们供应一次数学猜想、试验的机会——练习:设点Q是圆C:(x1)2225|AB|的最小值。 3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。引申:若将点A移到圆C外,点M的轨迹会是什么? 练习题设置的目的是为学生课外自主探究学习供应平台,当然,假如课堂上时间允许的话,可借助多媒体课件,引导学生对自己的结论进行验证。(一)圆锥曲线的定义1. 圆锥曲线的第肯定义2. 圆锥曲线的统肯定义(二)圆锥曲线定义的应用举例x2y21.双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P169到右准线的距离。|PF1|PF2|2.P为等轴双曲线x2y2a2上一点, F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。3.在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。x2y24.(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求259|MA|+|MF|的最小值。x2y211(2)已知A(,3)为肯定点,F为双曲线1的右焦点,M在双曲线右支上移动,当92721|AM|MF|最小时,求M点的坐标。 2x2(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。 8x2y25.已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最259小值与最大值。七、教学反思1.本课将借助于,将使全体学生参加活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用多媒体课件协助教学,节约了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出多媒体课件与探究合作式教学理念的有机结合的教学优势。2.利用两个例题及其引申,通过一题多变,层层深化的探究,以及对揣测结果的检测探讨,培育学生思维实力,使学生从学会一个问题的求解到驾驭一类问题的解决方法. 按部就班的让学生把握这类问题的解法;将学生简单混淆的两类求最值问题并为一道题,便利学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。总之,如何更好地选择符合学生详细状况,满意教学目标的例题与练习、敏捷把握课堂教学节奏仍是我今后工作中的一个重要探讨课题.而要能真正进行素养教化,培育学生的创新意识,自己首先必需更新观念——在教学中适度运用多媒体技术,让学生有参加教学实践的机会,能够使学生在学习新学问的同时,激发起求知的欲望,在寻求解决问题的方法的过程中获得自信和胜利的体验,于不知不觉中改善了他们的思维品质,提高了数学思维实力。中学数学等比数列优秀教案教学目标1.理解等比数列的概念,驾驭等比数列的通项公式,并能运用公式解决简洁的问题。(1)正确理解等比数列的定义,了解公比的概念,明确一个数列是等比数列的限定条件,能依据定义推断一个数列是等比数列,了解等比中项的概念;(2)正确相识运用等比数列的表示法,能敏捷运用通项公式求等比数列的首项、公比、项数及指定的项;(3)通过通项公式相识等比数列的性质,能解决某些实际问题。2.通过对等比数列的探讨,逐步培育学生视察、类比、归纳、猜想等思维品质。3.通过对等比数列概念的归纳,进一步培育学生严密的思维习惯,以及实事求是的科学看法。教材分析(1)学问结构等比数列是另一个简洁常见的数列,探讨内容可与等差数列类比,首先归纳出等比数列的定义,导出通项公式,进而探讨图像,又给出等比中项的概念,最终是通项公式的应用.(2)重点、难点分析教学重点是等比数列的定义和对通项公式的相识与应用,教学难点在于等比数列通项公式的推导和运用.与等差数列一样,等比数列也是特别的数列,二者有很多相同的性质,但也有明显的区分,可依据定义与通项公式得出等比数列的特性,这些是教学的重点.虽然在等差数列的学习中曾接触过不完全归纳法,但对学生来说仍旧不熟识;在推导过程中,须要学生有肯定的视察分析猜想实力;第一项是否成立又须补充说明,所以通项公式的推导是难点.对等差数列、等比数列的综合探讨离不开通项公式,因而通项公式的敏捷运用既是重点又是难点.教学建议(1)建议本节课分两课时,一节课为等比数列的概念,一节课为等比数列通项公式的应用.(2)等比数列概念的引入,可给出几个详细的例子,由学生概括这些数列的相同特征,从而得到等比数列的定义.也可将几个等差数列和几个等比数列混在一起给出,由学生将这些数列进行分类,有一种是按等差、等比来分的,由此对比地概括等比数列的定义.(3)依据定义让学生分析等比数列的公比不为0,以及每一项均不为0的特性,加深对概念的理解.(4)对比等差数列的表示法,由学生归纳等比数列的各种表示法. 启发学生用函数观点相识通项公式,由通项公式的结构特征画数列的图象.(5)由于有了等差数列的探讨阅历,等比数列的探讨完全可以放手让学生自己解决,老师只需把握课堂的节奏,作为一节课的组织者出现.(6)可让学生相互出题,解题,讲题,充分发挥学生的主体作用.教学设计示例课题:等比数列的概念教学目标1.通过教学使学生理解等比数列的概念,推导并驾驭通项公式.2.使学生进一步体会类比、归纳的思想,培育学生的视察、概括实力.3.培育学生勤于思索,实事求是的精神,及严谨的科学看法.教学重点,难点重点、难点是等比数列的定义的归纳及通项公式的推导.教学用具投影仪,多媒体软件,电脑.教学方法探讨、谈话法.教学过程一、提出问题给出以下几组数列,将它们分类,说出分类标准.(幻灯片)-2,1,4,7,10,13,16,19,8,16,32,64,128,256,1,1,1,1,1,1,1,243,81,27,9,3,1,31,29,27,25,23,21,19,1,-1,1,-1,1,-1,1,-1,1,-10,100,-1000,10000,-100000,0,0,0,0,0,0,0,由学生发表看法(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摇摆数列,也可能分为等差、等比两类),统一一种分法,其中为有共同性质的一类数列(学生看不出的状况也无妨,得出定义后再考察是否为等比数列).二、讲解新课请学生说出数列的共同特性,老师指出实际生活中也有很多类似的例子,如变形虫分裂问题.假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设起先有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,始终进行下去,记录下每个单位时间的变形虫个数得到了一列数这个数列也具有前面的几个数列的共同特性,这是我们将要探讨的另一类数列——等比数列. (这里播放变形虫分裂的多媒体软件的第一步)等比数列(板书)1.等比数列的定义(板书)依据等比数列与等差数列的名字的区分与联系,尝试给等比数列下定义.学生一般回答可能不够完备,多数状况下,有了等差数列的基础是可以由学生概括出来的.老师写出等比数列的定义,标注出重点词语.请学生指出等比数列各自的公比,并思索有多数列既是等差数列又是等比数列.学生通过视察可以发觉是这样的数列,老师再追问,还有没有其他的例子,让学生再举两例.而后请学生概括这类数列的一般形式,学生可能说形如的数列都满意既是等差又是等比数列,让学生探讨后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列.老师追问理由,引出对等比数列的相识:2.对定义的相识(板书)(1)等比数列的首项不为0;(2)等比数列的每一项都不为0,即问题:一个数列各项均不为0是这个数列为等比数列的什么条件?(3)公比不为0.用数学式子表示等比数列的定义.是等比数列.在这个式子的写法上可能会有一些争议,如写成,可让学生探讨行不行,好不好;接下来再问,能否改写为是等比数列?为什么不能? 式子给出了数列第项与第项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列须要几个条件?当给定了首项及公比后,如何求随意一项的值?所以要探讨通项公式.3.等比数列的通项公式(板书)问题:用和表示第项不完全归纳法叠乘法,这个式子相乘得,所以(板书)(1)等比数列的通项公式得出通项公式后,让学生思索如何相识通项公式.(板书)(2)对公式的相识由学生来说,最终归结:函数观点;方程思想(因在等差数列中已有相识,此处再复习巩固而已).这里强调方程思想解决问题.方程中有四个量,知三求一,这是公式最简洁的应用,请学生举例(应能编出四类问题).解题格式是什么?(不仅要会解题,还要留意规范表述的训练)假如增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再探讨.同学可以试着编几道题。三、小结1.本节课探讨了等比数列的概念,得到了通项公式;2.留意在探讨内容与方法上要与等差数列相类比;3.用方程的思想相识通项公式,并加以应用。探究活动将一张很大的薄纸对折,对折30次后(假如可能的话)有多厚?不妨假设这张纸的厚度为0.01毫米。参考答案:30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。假如纸再薄一些,比如纸厚0.001毫米,对折34次就超过珠穆朗玛峰的高度了.还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最终一个格子中的米应是 粒,用计算器算一下吧(对数算也行)。中学数学数列教案设计一、教材分析(一)地位与作用数列是中学数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特别的函数与函数思想密不行分;另一方面学习数列也为进一步学习数列的极限等内容做好打算。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的学问进一步深化和拓广。同时等差数列也为今后学习等比数列供应了学习对比的依据。(二)学情分析(1)学生已娴熟驾驭_。(2)学生的学问阅历较为丰富,具备了教强的抽象思维实力和演绎推理实力。(3)学生思维活泼,主动性高,已初步形成对数学问题的合作探究实力。(4) 学生层次参次不齐,个体差异比较明显。二、目标分析新课标指出三维目标是一个亲密联系的有机整体,应当以获得学问与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以学问技能的培育为主线,透情感看法与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必需从学生的角度动身,依据_在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:(一)教学目标(1)学问与技能使学生理解函数单调性的概念,初步驾驭判别函数单调性的方法;。(2)过程与方法引导学生通过视察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简洁的问题;使学生领悟数形结合的数学思想方法,培育学生发觉问题、分析问题、解决问题的实力。(3)情感看法与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培育学生擅长视察、勇于探究的良好习惯和严谨的科学看法。(二)重点难点本节课的教学重点是_,教学难点是_。三、教法、学法分析(一)教法基于本节课的内容特点和高二学生的年龄特征,根据临沂市中学数学三五四课堂教学策略,采纳探究体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我实行了:1、通过学生熟识的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参加的主动性.2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参加,正确地形成概念.3、在激励学生主体参加的同时,不行忽视老师的主导作用,要教会学生清楚的思维、严谨的推理,并顺当地完成书面表达.(二)学法在学法上我重视了:1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性相识到理性思维的质的飞跃。2、让学生从问题中质疑、尝试、归纳、总结、运用,培育学生发觉问题、探讨问题和分析解决问题的实力。四、教学过程分析(一)教学过程设计教学是一个老师的导,学生的学以及教学过程中的悟构成的和谐整体。老师的导也就是老师启发、诱导、激励、评价等为学生的学习搭建支架,把学习的任务转移给学生,学生就是接受任务,探究问题、完成任务。假如在教学过程中把教与学完备的结合也就是以问题为核心,通过对学问的发生、发展和运用过程的演绎、说明和探究来组织和推动教学。(1)创设情境,提出问题。新课标指出:应当让学生在详细生动的情境中学习数学。在本节课的教学中,从我们熟识的生活情境中提出问题,问题的设计变更了传统目的明确的设计方式,给学生最大的思索空间,充分体现学生主体地位。(2)引导探究,建构概念。数学概念的形成来自解决实际问题和数学自身发展的须要.但概念的高度抽象,造成了难懂、难教和难学,这就须要让学生置身于符合自身实际的学习活动中去,从自己的阅历和已有的学问基础动身,经验数学化、再创建的活动过过程.(3)自我尝试,初步应用。有效的数学学习过程,不能单纯的仿照与记忆,数学思想的领悟和学习过程更是如此。让学生在解题过程中亲身经验和实践体验,师生互动学习,生生合作沟通,共同探究.(4)当堂训练,巩固深化。通过学生的主体参加,使学生深切体会到本节课的主要内容和思想方法,从而实现对学问识的再次深化。(5)小结归纳,回顾反思。小结归纳不仅是对学问的简洁回顾,还要发挥学生的主体地位,从学问、方法、阅历等方面进行总结。我设计了三个问题:(1)通过本节课的学习,你学到了哪些学问?(2)通过本节课的学习,你最大的体验是什么?(3)通过本节课的学习,你驾驭了哪些技能?(二)作业设计作业分为必做题和选做题,必做题对本节课学生学问水平的反馈,选做题是对本节课内容的延长与,注意学问的延长与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得胜利的喜悦,看到自己的潜能,从而激发学生饱满的学习爱好,促进学生自主发展、合作探究的学习氛围的形成.中学数学优秀教案模板中学数学教案范文本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第23页 共23页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页第 23 页 共 23 页