半导体工艺及器件仿真工具课件.pptx
第第1章章可制造性设计工具可制造性设计工具Sentaurus TCAD 2/117Sentaurus简介简介 Sentaurus TCAD全面继承了全面继承了Tsuprem4,Medici和和ISE- TCAD的特点和优势,它可以用来模拟集成器件的工艺制的特点和优势,它可以用来模拟集成器件的工艺制程,器件物理特性和互连线特性等。程,器件物理特性和互连线特性等。 Sentaurus TCAD提供全面的产品套件,其中包括提供全面的产品套件,其中包括Sentaurus Workbench, Ligament, Sentaurus Process, Sentaurus Structure Editor, Mesh Noffset3D, Sentaurus Device, Tecplot SV,Inspect, Advanced Calibration等等。等等。2022-4-12浙大微电子3/117Sentaurus简介简介 Sentaurus Process和和Sentaurus Device可以支持的仿可以支持的仿真器件类型非常广泛,包括真器件类型非常广泛,包括CMOS,功率器件,存储器,功率器件,存储器,图像传感器,太阳能电池,和模拟图像传感器,太阳能电池,和模拟/ /射频器件。射频器件。 Sentaurus TCAD还提供互连建模和参数提取工具,为还提供互连建模和参数提取工具,为 优化芯片性能提供关键的寄生参数信息。优化芯片性能提供关键的寄生参数信息。2022-4-12浙大微电子4/117 Sentaurus TCAD的启动的启动 运行运行 vncviewer 在在xterm中输入中输入: source /opt/demo/sentaurus.env GENESISe &2022-4-12浙大微电子5/1172022-4-12浙大微电子6/1172022-4-12浙大微电子7/117本章内容本章内容1 集成工艺集成工艺仿真系统仿真系统 Sentaurus Process 2 器件结构编辑工具器件结构编辑工具Sentaurus Structure Editor 3 器件仿真工具器件仿真工具Sentaurus Device 4 集成电路虚拟制造系统集成电路虚拟制造系统Sentaurus Workbench简介简介2022-4-12浙大微电子8/117本章内容本章内容1 集成工艺仿真系统集成工艺仿真系统 Sentaurus Process 2 器件结构编辑工具器件结构编辑工具Sentaurus Structure Editor 3 器件仿真工具器件仿真工具Sentaurus Device 4 集成电路虚拟制造系统集成电路虚拟制造系统Sentaurus Workbench简介简介2022-4-12浙大微电子9/117Sentaurus Process 工艺仿真工具简介工艺仿真工具简介 Sentaurus Process是当前最为先进的工艺仿真工具,是当前最为先进的工艺仿真工具,它将一维,二维和三维仿真集成于同一平台中,并面向当代它将一维,二维和三维仿真集成于同一平台中,并面向当代纳米级集成电路工艺制程,全面支持小尺寸效应的仿真与模纳米级集成电路工艺制程,全面支持小尺寸效应的仿真与模拟。拟。Sentaurus Process在保留传统工艺仿真软件运行模式在保留传统工艺仿真软件运行模式的基础上,又做了一些重要的改进。的基础上,又做了一些重要的改进。2022-4-12浙大微电子10/1172022-4-12浙大微电子 增加了模型参数数据库浏览器(增加了模型参数数据库浏览器(PDB),为用户提供了),为用户提供了 修改模型参数和增加模型的方便途径。修改模型参数和增加模型的方便途径。 增加了一维模拟结果输出工具增加了一维模拟结果输出工具Inspect和二维、三维模拟结和二维、三维模拟结 果输出工具(果输出工具(Tecplot SV)。)。 增加了小尺寸模型。这些小尺寸模型主要有:增加了小尺寸模型。这些小尺寸模型主要有: 高精度刻蚀模型,高精度刻蚀模型, 基于基于Monte Carlo的离子扩散模型,的离子扩散模型, 注入损伤模型,注入损伤模型, 离子注入校准模型等等。离子注入校准模型等等。 增加了这些小尺寸模型,提高了工艺软件的仿真精度,增加了这些小尺寸模型,提高了工艺软件的仿真精度,适应了半导体工艺发展的需求。适应了半导体工艺发展的需求。11/117Sentaurus Process 基本命令介绍基本命令介绍 用户可以通过输入命令指导用户可以通过输入命令指导Sentaurus Process的执行。的执行。而这些命令可以通过输入命令文件或者用户终端直接输入。而这些命令可以通过输入命令文件或者用户终端直接输入。2022-4-12浙大微电子12/117(1) 文件说明及控制语句文件说明及控制语句exit: 用于终止用于终止Sentaurus Process的运行。的运行。fbreak: 使仿真进入交互模式。使仿真进入交互模式。fcontinue: 重新执行输入文件。重新执行输入文件。fexec: 执行系统命令文件。执行系统命令文件。interface: 返回材料的边界位置。返回材料的边界位置。load: 从文件中导入数据信息并插入到当前网格。从文件中导入数据信息并插入到当前网格。logfile: 将注释信息输出到屏幕以及日志文件中。将注释信息输出到屏幕以及日志文件中。mater: 返回当前结构中的所有材料列表,或在原列表中增加返回当前结构中的所有材料列表,或在原列表中增加 新的材料。新的材料。mgoals: 使用使用MGOALS引擎设置网格参数。引擎设置网格参数。2022-4-12浙大微电子13/117(2) 器件结构说明语句器件结构说明语句init: 设置初始网格和掺杂信息。设置初始网格和掺杂信息。region: 指定结构中特定区域的材料。指定结构中特定区域的材料。line: 指定网格线的位置和间距。指定网格线的位置和间距。grid: 执行网格设置的命令。执行网格设置的命令。substrate_profile: 定义器件衬底的杂质分布。定义器件衬底的杂质分布。polygon: 描述多边形结构。描述多边形结构。point: 描述器件结构中的一个点。描述器件结构中的一个点。doping: 定义线性掺杂分布曲线。定义线性掺杂分布曲线。profile: 读取数据文件并重建数据区域。读取数据文件并重建数据区域。refinebox: 设置局部网格参数,并用设置局部网格参数,并用MGOALS库进行细化。库进行细化。bound: 提取材料边界并返回坐标列表。提取材料边界并返回坐标列表。contact: 设置电极信息。设置电极信息。 2022-4-12浙大微电子(3) 工艺步骤说明语句工艺步骤说明语句deposit: 用于淀积一个新的层次。用于淀积一个新的层次。diffuse: 用于高温扩散和高温氧化。用于高温扩散和高温氧化。etch: 用于刻蚀。用于刻蚀。implant: 实现离子注入。实现离子注入。mask: 用于定义掩膜版。用于定义掩膜版。photo: 淀积光刻胶。淀积光刻胶。strip: 去除表面的介质层。去除表面的介质层。stress: 用于计算应力。用于计算应力。2022-4-12浙大微电子14/11715/117(4) 模型和参数说明语句模型和参数说明语句beam: 给出用于离子束刻蚀的模型参数。给出用于离子束刻蚀的模型参数。gas_flow: 设置扩散步骤中的气体氛围。设置扩散步骤中的气体氛围。kmc: 设定蒙特卡罗模型。设定蒙特卡罗模型。pdbNewMaterial:用于引入新的材料。用于引入新的材料。pdbGet: 用于提取数据库参数。用于提取数据库参数。pdbSet: 用于完成数据库参数的修改。用于完成数据库参数的修改。SetFastMode: 忽略扩散和模特卡罗注入模型,加快仿真速度。忽略扩散和模特卡罗注入模型,加快仿真速度。SetTemp: 设置温度。设置温度。solution: 求解或设置求解参数。求解或设置求解参数。strain_profile: 定义因掺杂引入的张力变化。定义因掺杂引入的张力变化。temp_ramp: 定义扩散过程中的温度变化。定义扩散过程中的温度变化。update_substrate: 设置衬底中的杂质属性,张力,晶格常量等信息。设置衬底中的杂质属性,张力,晶格常量等信息。2022-4-12浙大微电子16/117(5) 输出说明语句输出说明语句color: 用于设定、填充被仿真的器件结构中某特定区域杂质用于设定、填充被仿真的器件结构中某特定区域杂质 浓度等值曲线的颜色。浓度等值曲线的颜色。contour: 用于设置二维浓度剖面等值分布曲线的图形输出。用于设置二维浓度剖面等值分布曲线的图形输出。graphics: 启动或更新启动或更新Sentaurus Process已经设置的图形输出。已经设置的图形输出。layers: 用于打印器件结构材料的边界数据和相关数据。用于打印器件结构材料的边界数据和相关数据。print.1d: 沿器件结构的某一维方向打印相关数据。沿器件结构的某一维方向打印相关数据。plot.1d: 沿器件结构的某一维方向输出某些物理量之间的变化曲线。沿器件结构的某一维方向输出某些物理量之间的变化曲线。plot.2d: 输出器件结构中二维浓度剖面分布曲线。输出器件结构中二维浓度剖面分布曲线。plot.tec: 启动或更新启动或更新Sentaurus ProcessTecplot SV所输出的所输出的 一维、二维和一维、二维和 三维图形。三维图形。print.data: 以以x、y、z的坐标格式打印数据。的坐标格式打印数据。writePlx: 设置输出一维掺杂数据文件。设置输出一维掺杂数据文件。struct: 设置网格结构及求解信息。设置网格结构及求解信息。2022-4-12浙大微电子17/117Sentaurus Process 中的小尺寸模型中的小尺寸模型 (1) 离子注入模型离子注入模型 解析注入模型或蒙特卡罗解析注入模型或蒙特卡罗(MC)注入模型可以用来计算离注入模型可以用来计算离子注入的分布情况及仿真所造成的注入损伤程度。子注入的分布情况及仿真所造成的注入损伤程度。 为满足现代集成工艺技术发展的需求,为满足现代集成工艺技术发展的需求,Sentaurus Process添加了很多小尺寸模型,如添加了很多小尺寸模型,如 掺杂剂量控制模型(掺杂剂量控制模型(Beam dose control)、)、 杂质剖面改造模型(杂质剖面改造模型(Profile reshaping)、)、 有效沟道抑制模型(有效沟道抑制模型(Effective channelling suppression) 无定型靶预注入模型无定型靶预注入模型(Preamorphiza-tion implants,PAI)等等。等等。2022-4-12浙大微电子18/117(2) 扩散模型扩散模型 Sentaurus Process仿真高温扩散的主要模型有:仿真高温扩散的主要模型有: 杂质选择性扩散模型、杂质选择性扩散模型、 引入了杂质活化效应对杂质迁移的影响,也间接地覆盖了热扩散工引入了杂质活化效应对杂质迁移的影响,也间接地覆盖了热扩散工艺中产生的缺陷对杂质的影响,适于模拟特征尺寸小于艺中产生的缺陷对杂质的影响,适于模拟特征尺寸小于100nm的扩的扩散工艺。散工艺。 杂质激活模型、杂质激活模型、 杂质激活模型主要是考虑了掺杂过程中,缺陷、氧化空位及硅化物杂质激活模型主要是考虑了掺杂过程中,缺陷、氧化空位及硅化物界面态所引发的杂质激活效应。界面态所引发的杂质激活效应。 缺陷对杂质迁移的影响,缺陷对杂质迁移的影响, 表面介质的移动、掺杂对内部电场的影响等等。表面介质的移动、掺杂对内部电场的影响等等。2022-4-12浙大微电子19/117(3) 对局部微机械应力变化计算的建模对局部微机械应力变化计算的建模 随着器件尺寸的进一步缩小,器件内部机械应力的变随着器件尺寸的进一步缩小,器件内部机械应力的变化会使材料的禁带宽度发生变化,使得杂质扩散速率以及化会使材料的禁带宽度发生变化,使得杂质扩散速率以及氧化速率等也发生相应变化,从而使得局部热生长氧化层氧化速率等也发生相应变化,从而使得局部热生长氧化层产生形状变异。产生形状变异。 Sentaurus Process包含了很多引起微机械应力变化的包含了很多引起微机械应力变化的机制,包括热失配,晶格失配以及由于材料淀积、刻蚀引机制,包括热失配,晶格失配以及由于材料淀积、刻蚀引起的应力变化等等。起的应力变化等等。 2022-4-12浙大微电子20/117Sentaurus Process 仿真实例仿真实例 (1) 定义二维初始网格定义二维初始网格 line x location=0.00 spacing=0.01 tag=SiTop line x location=0.50 spacing=0.01 line x location=0.90 spacing=0.10 line x location=1.30 spacing=0.25 line x location=4.00 spacing=0.25 line x location=6.00 spacing=0.50 line x location=10.0 spacing=2.50 line x location=15.0 spacing=5.00 line x location=44.0 spacing=10.0 tag=SiBottom line y location=0.00 spacing=0.50 tag=Left line y location=7.75 spacing=0.50 tag=Right2022-4-12浙大微电子21/117(2) 开启二维输出结果调阅工具开启二维输出结果调阅工具Tecplot SV界面界面 graphics on(3) 激活校准模型激活校准模型 AdvancedCalibration(4) 开启自适应网格开启自适应网格 pdbSet Grid Adaptive 1(5) 定义仿真区域并对仿真区域进行初始化定义仿真区域并对仿真区域进行初始化 region silicon xlo=SiTop xhi=SiBottom ylo=Left yhi=Right init field=As resistivity=14 wafer.orient=1002022-4-12浙大微电子22/1172022-4-12浙大微电子23/117(6) 定义网格细化规则定义网格细化规则 mgoals on min.normal.size=10 max.lateral.size=2 normal.growth.ratio=1.2 accuracy=2e-5 mgoals命令在初始网格的基础上来重新定义网格。网命令在初始网格的基础上来重新定义网格。网格的调整只是针对新的层或新生成的表面区域。格的调整只是针对新的层或新生成的表面区域。mgoals命命令中的令中的min.normal.size用来定义边界处的网格最小间距,用来定义边界处的网格最小间距,离开表面后将按照离开表面后将按照normal.growth.ratio确定的速率变化。确定的速率变化。而而max.lateral.size定义了边界处网格的最大横向间距。定义了边界处网格的最大横向间距。Accuracy为误差精度。为误差精度。2022-4-12浙大微电子24/117(7) 在重要区域进一步优化网格在重要区域进一步优化网格 refinebox min= 2.5 0 max= 3 1 xrefine= 0.1 yrefine= 0.1 all add refinebox min= 2.5 1 max= 2 3 xrefine= 0.1 yrefine= 0.1 all add refinebox min= 0 1.7 max= 0.2 2.9 xrefine= 0.1 yrefine= 0.1 all add refinebox min= 0 3 max= 2.5 5 xrefine= 0.1 yrefine= 0.1 all add2022-4-12浙大微电子25/117(8) 生长薄氧层生长薄氧层 gas_flow name=O2_HCL pressure=1 flows = O2 =4.0 HCl = 0.03 diffuse temperature=950 time=25 gas_flow=O2_HCL(9) JFET注入注入 mask name=JFET_mask left=0 right=6.75 implant Phosphorus mask=JFET_mask dose=1.5e12 energy=100 diffuse temp=1170 time=180 mask clear2022-4-12浙大微电子26/117(10) 保存一维掺杂文件保存一维掺杂文件 SetPlxList AsTotal PTotal WritePlx epi.plx y=7 silicon 在在SetPlxList命令中,将砷和磷的掺杂分布做了保存。命令中,将砷和磷的掺杂分布做了保存。在在WritePlx命令中,指定保存命令中,指定保存y=7um处的掺杂分布曲线。最处的掺杂分布曲线。最终保存为一维掺杂分布曲线。终保存为一维掺杂分布曲线。2022-4-12浙大微电子27/1172022-4-12浙大微电子28/117(11) 生长栅氧化层生长栅氧化层 etch oxide type=anisotropic thickness=0.5 gas_flow name=O2_1_HCL_1_H2 pressure=1 / Flows= O2=10.0 H2 =5.0 HCl =0.03 diffuse temperature=1000 time=17 / gas_flow=O2_1_HCL_1_H2(12) 制备多晶硅栅极制备多晶硅栅极 deposit poly type=anisotropic thickness=0.6 mask name=gate_mask left=2.75 right=8 etch poly type=anisotropic thickness=0.7 / mask=gate_mask mask clear 2022-4-12浙大微电子29/117(13) 形成形成P-body区域区域 implant Boron dose=2.8e13 energy=80 diffuse temp=1170 time=1202022-4-12浙大微电子30/117(14) 形成形成P+接触区域接触区域 mask name=P+_mask left=0.85 right=8 implant Boron mask=P+_mask dose=1e15 energy=60 diffuse temp=1100 time=100 mask clear (15) 形成源区域形成源区域 mask name=N+_mask left=0 right=1.75 mask name=N+_mask left=2.75 right=8 implant As mask=N+_mask dose=5e15 energy=60 mask clear2022-4-12浙大微电子31/117(16) 制备侧墙区制备侧墙区 deposit nitride type=isotropic thickness=0.2 etch nitride type=anisotropic thickness=0.25 etch oxide type=anisotropic thickness=100 diffuse temperature=950 time=25 (17) 制备铝电极制备铝电极 deposit Aluminum type=isotropic thickness=0.7 mask name=contacts_mask left=0 right=2.5 etch Aluminum type=anisotropic thickness=2.5/ mask=contacts_mask mask clear2022-4-12浙大微电子32/117(18) 定义电极定义电极 contact name=Gate x=-0.5 y=5 replace point contact name=Source x=-0.5 y=1 replace point contact name=Drain bottom(19) 保存完整的器件结构保存完整的器件结构 struct tdr=vdmos_final struct smesh=500vdmos_final2022-4-12浙大微电子33/1172022-4-12浙大微电子34/117本章内容本章内容1 集成工艺仿真系统集成工艺仿真系统 Sentaurus Process 2 器件结构编辑工具器件结构编辑工具Sentaurus Structure Editor 3 器件仿真工具器件仿真工具Sentaurus Device 4 集成电路虚拟制造系统集成电路虚拟制造系统Sentaurus Workbench简介简介2022-4-12浙大微电子35/117Sentaurus Structure Editor (SDE) 器件结构编辑工具简介器件结构编辑工具简介 SDE是基于二维和三维器件结构编辑的集成环境,可生成是基于二维和三维器件结构编辑的集成环境,可生成或编辑二维和三维器件结构,用于与或编辑二维和三维器件结构,用于与Process工艺仿真系统的工艺仿真系统的结合。结合。 在在Sentaurus TCAD系列仿真工具中,系列仿真工具中,SDE工具是必不可工具是必不可少的。因为在使用少的。因为在使用Sentaurus Process执行完工艺仿真后,必执行完工艺仿真后,必须使用须使用SDE将将Process工艺仿真阶段生产的电极激活,并调入工艺仿真阶段生产的电极激活,并调入Process仿真过渡来的掺杂信息,进行网格细化处理后,才能仿真过渡来的掺杂信息,进行网格细化处理后,才能进行下一步的器件物理特性模拟。进行下一步的器件物理特性模拟。 2022-4-12浙大微电子36/117完成从完成从Sentaurus Process到到Sentaurus Device的接口转换的接口转换1 在命令提示符下输入:在命令提示符下输入:sde,启动启动Sentaurus Structure Editor工具。工具。 2 调入边界文件:调入边界文件:File Import,该结构文件可以是该结构文件可以是DF-ISE格式,也可以是格式,也可以是TDR格式。格式。 3 激活电极。激活电极。(1)在选取类型列表中选择)在选取类型列表中选择Select Face;(2)在电极列表中选择需要激活的电极名;)在电极列表中选择需要激活的电极名;(3)在器件结构中选择电极区域;)在器件结构中选择电极区域;2022-4-12浙大微电子37/1172022-4-12浙大微电子38/117(4)在菜单中选择:在菜单中选择:Device Contacts Contact Sets, 电极设置对话框如图所示;电极设置对话框如图所示;(5)在在Defined Contact Sets中选择电极,同时可以设置中选择电极,同时可以设置 电极颜色,边缘厚度和类型等信息;电极颜色,边缘厚度和类型等信息;(6)单击单击Activate按钮;按钮;(7)单击单击Close关闭对话框。关闭对话框。 同样重复以上步骤,可以完成其他电极的定义和激活。同样重复以上步骤,可以完成其他电极的定义和激活。2022-4-12浙大微电子39/1174 保存设置:保存设置:File Save Model 5 载入掺杂数据信息。载入掺杂数据信息。 载入方式为:载入方式为:Device External Profile Placement。外部掺杂信息设置对话框如图所示。在外部掺杂信息设置对话框如图所示。在Name栏中输入栏中输入Doping。在在Geometry File栏中载入工艺仿真后生成的网格数据文件栏中载入工艺仿真后生成的网格数据文件(若保存格式为(若保存格式为DF-ISE,应选择应选择.gds文件文件; 若保存格式为若保存格式为TDR,应选择,应选择.tdr文件)。在文件)。在Data Files栏中点击栏中点击Browser按按钮并选择掺杂数据文件(若保存格式为钮并选择掺杂数据文件(若保存格式为DF-ISE,应选择,应选择.dat文件文件; 若保存格式为若保存格式为TDR,应选择,应选择.tdr文件)文件),单击单击Add按按钮,载入掺杂数据文件。钮,载入掺杂数据文件。 最后,单击最后,单击Add Placement 按钮。按钮。2022-4-12浙大微电子40/1172022-4-12浙大微电子41/1176 定义网格细化窗口。用户可以对重点研究区域进行网格的定义网格细化窗口。用户可以对重点研究区域进行网格的 重新设置,以增加仿真精度和收敛性。操作如下:重新设置,以增加仿真精度和收敛性。操作如下: MeshDefine Ref/Eval WindowCuboid 2022-4-12浙大微电子42/1177 定义网格细化方案定义网格细化方案 选择菜单栏中的选择菜单栏中的Mesh Refinement Placement。 在网格细化设置对话框中,选择在网格细化设置对话框中,选择Ref/Win选项,并选择上一步定义选项,并选择上一步定义的网格细化窗口。的网格细化窗口。 根据仿真精度要求,设置根据仿真精度要求,设置max element size和和 min element size参数。参数。 单击单击Add Placement按钮。按钮。2022-4-12浙大微电子43/1172022-4-12浙大微电子44/1178 执行设置方案。执行设置方案。 选择菜单栏中的选择菜单栏中的Mesh Build Mesh,输入网格细化,输入网格细化执行后保存的网格数据信息文件名,并选择网格引擎,并执行后保存的网格数据信息文件名,并选择网格引擎,并单击单击Build Mesh按钮,按钮,SDE会根据设置的网格细化方案会根据设置的网格细化方案执行网格的细化,执行完成后会生成执行网格的细化,执行完成后会生成3个数据文件:个数据文件: _msh.grd, _msh.dat 和和_msh.log。2022-4-12浙大微电子45/1172022-4-12浙大微电子46/117创建三维结构创建三维结构 1. SDE环境初始化环境初始化: File New; 2. 设置精确坐标模式设置精确坐标模式:Draw Exact Coordinates;3. 选择器件材料选择器件材料Sentaurus Structure Editor所使用的材料都在所使用的材料都在Material列表中进行选择;列表中进行选择;4. 选择默认的选择默认的Boolean表达式表达式 在菜单中选择在菜单中选择 Draw Overlap Behavior New Replaces Old;5. 关闭自动命名器件结构区域模式关闭自动命名器件结构区域模式 Draw Auto Region Naming;2022-4-12浙大微电子47/1176. 创建立方体区域创建立方体区域(1) 选择选择Isometric View ( ISO),改为三维绘图模式。改为三维绘图模式。(2) 在菜单栏中选择在菜单栏中选择Draw Create 3D Region Cuboid。(3) 在窗口中单击并拖动鼠标,将出现一个立方体区域的定义在窗口中单击并拖动鼠标,将出现一个立方体区域的定义对话框,输入对话框,输入(0 0 0)和和(7.75 44 3),),然后单击然后单击OK按钮按钮。2022-4-12浙大微电子48/117(4) 在在SDE对话框中输入结构区域的名称对话框中输入结构区域的名称Epitaxy,单击单击OK按钮。按钮。 2022-4-12浙大微电子49/1177. 改变改变Boolean表达式表达式 在菜单栏中选择在菜单栏中选择Draw Overlap Behavior Old Replaces Old。8. 创建其他区域创建其他区域 器件的其他区域,即栅氧层,多晶硅栅,侧墙以及电极区器件的其他区域,即栅氧层,多晶硅栅,侧墙以及电极区 域都可以用同样的方法来创建。域都可以用同样的方法来创建。 2022-4-12浙大微电子50/1172022-4-12浙大微电子51/1179. 定义电极定义电极 在这里,栅极、源极和漏极需要定义。在这里,栅极、源极和漏极需要定义。 10. 定义外延层中的均匀杂质分布浓度定义外延层中的均匀杂质分布浓度(1) 选择菜单栏中的选择菜单栏中的 Device Constant Profile Placement;(2) 在在Placement Name栏中输入栏中输入PlaceCD.epi;(3) 在在Placement Type group框中,选择框中,选择Region, 并在列表中选择并在列表中选择Epitaxy;(4) 在在Constant Profile Definition框中,框中, 输入输入Const.Epi到到Name栏中;栏中;(5) 在在Species栏中选择栏中选择 ArsenicActiveConcentration;2022-4-12浙大微电子52/117(6) 在在Concentration栏中栏中 输入输入3.3e14;(7) 单击单击Add Placement按钮;按钮;(8) 重复以上步骤定义多晶硅重复以上步骤定义多晶硅 栅的掺杂浓度为栅的掺杂浓度为1e20;(9) 单击单击Close关闭窗口。关闭窗口。2022-4-12浙大微电子53/11711. 定义解析杂质浓度分布定义解析杂质浓度分布 定义解析杂质浓度分布包括两个步骤。第一步先定义杂定义解析杂质浓度分布包括两个步骤。第一步先定义杂质分布窗口,第二步定义解析杂质浓度分布。质分布窗口,第二步定义解析杂质浓度分布。 定义杂质分布窗口的步骤如下:定义杂质分布窗口的步骤如下:(1) 选择菜单栏中的选择菜单栏中的Draw Exact Coordinates;(2) Mesh Define Ref/Eval Window Rectangle;(3) 在视窗中,拖动一个矩形区域;在视窗中,拖动一个矩形区域;(4) 在在Exact Coordinates对话框中,输入对话框中,输入(0 0)和和(2.75 3.5),以定义杂质分布窗口坐标;以定义杂质分布窗口坐标;2022-4-12浙大微电子54/117(5) 单击单击OK;(6) 在接着弹出的对话框中,输入在接着弹出的对话框中,输入P-Body作为杂质分布窗口的作为杂质分布窗口的 名称;名称;(7) 利用表中的参数值,重复以上步骤定义其他杂质分布窗口。利用表中的参数值,重复以上步骤定义其他杂质分布窗口。2022-4-12浙大微电子55/117定义解析杂质浓度分布的步骤如下:定义解析杂质浓度分布的步骤如下:(1) 选择菜单栏中的选择菜单栏中的 Device Analytic Profile Placement;(2) 在在Placement Name栏中输入栏中输入PlaceAP.body;(3) 在在Ref/Win列表中选择列表中选择P-Body;(4) 在在Profile Definition区域中,区域中, 输入输入Gauss.Body到到Name栏中;栏中;(5) 在在Species列表中选择列表中选择 BoronActiveConcentration;(6) 在在Peak Concentration栏中输入栏中输入4e16;2022-4-12浙大微电子56/117(7) 在在Peak Position栏中栏中 输入输入0;(8) 在在Junction栏和栏和Depth栏中栏中 分别输入分别输入3.3e14和和3.5;(9) 在在Lateral Diffusion Factor 栏中输入栏中输入0.75;(10) 单击单击Add Placement按钮;按钮;(11) 重复以上步骤分别定义重复以上步骤分别定义 其他区域的解析分布。其他区域的解析分布。2022-4-12浙大微电子57/11713. 定义网格细化方案定义网格细化方案14. 保存设置保存设置15. 执行设置方案执行设置方案 最终,器件的网格信息和掺杂信息将保存在两个文件最终,器件的网格信息和掺杂信息将保存在两个文件中,即中,即_msh.grd和和_msh.dat,这些文件可以导入到,这些文件可以导入到Sentaurus Device中进行后续仿真。中进行后续仿真。2022-4-12浙大微电子58/1172022-4-12浙大微电子59/117本章内容本章内容1 集成工艺仿真系统集成工艺仿真系统 Sentaurus Process 2 器件结构编辑工具器件结构编辑工具Sentaurus Structure Editor 3 器件仿真工具器件仿真工具Sentaurus Device 4 集成电路虚拟制造系统集成电路虚拟制造系统Sentaurus Workbench简介简介2022-4-12浙大微电子60/117Sentaurus Device器件仿真工具简介器件仿真工具简介 Sentaurus Device是新一代的器件物理特性仿真工具,是新一代的器件物理特性仿真工具,内嵌一维、二维和三维器件物理模型,通过数值求解一维、内嵌一维、二维和三维器件物理模型,通过数值求解一维、二维和三维泊松方程、连续性方程和运输方程,可以准确预二维和三维泊松方程、连续性方程和运输方程,可以准确预测器件的众多电学参数和电学特性。测器件的众多电学参数和电学特性。Sentaurus Device支持支持很多器件类型的仿真,包括量子器件,深亚微米很多器件类型的仿真,包括量子器件,深亚微米MOS器件,器件,功率器件,异质结器件,光电器件等。此外,功率器件,异质结器件,光电器件等。此外,Sentaurus Device还可以实现由多个器件所组成的单元级电路的物理特还可以实现由多个器件所组成的单元级电路的物理特性分析。性分析。2022-4-12浙大微电子61/117Sentaurus Device 主要物理模型主要物理模型 实现实现Sentaurus Device器件物理特性仿真的器件物理器件物理特性仿真的器件物理模型仍然是泊松方程、连续性方程和运输方程。基于以上物模型仍然是泊松方程、连续性方程和运输方程。基于以上物理模型,派生出了很多二级效应和小尺寸模型,均被添加理模型,派生出了很多二级效应和小尺寸模型,均被添加Sentaurus Device中。中。2022-4-12浙大微电子62/117(1) 产生产生-复合模型复合模型 产生产生-复合模型描述的是杂质在导带和价带之间交换载流复合模型描述的是杂质在导带和价带之间交换载流子的过程。产生子的过程。产生-复合模型主要包括:复合模型主要包括: SRH复合模型(肖克莱复合模型),复合模型(肖克莱复合模型), CDL复合模型,复合模型, 俄歇复合模型,俄歇复合模型, 辐射复合模型,辐射复合模型, 雪崩产生模型,雪崩产生模型, 带间隧道击穿模型等。带间隧道击穿模型等。2022-4-12浙大微电子63/117(2) 迁移率退化模型迁移率退化模型 描述迁移率与掺杂行为有关的模型描述迁移率与掺杂行为有关的模型 Masetti模型、模型、Arora模型和模型和University of Bologna模型模型 描述界面位置处载流子迁移率的退化模型描述界面位置处载流子迁移率的退化模型 Lombardi模型、模型、University of Bologna模型模型 描述载流子描述载流子-载流子散射的模型载流子散射的模型 ConwellW