欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年《勾股定理》说课稿范文(通用3篇).docx

    • 资源ID:10767033       资源大小:24.03KB        全文页数:13页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年《勾股定理》说课稿范文(通用3篇).docx

    2022年勾股定理说课稿范文(通用3篇)勾股定理说课稿范文(通用3篇)作为一无名无私奉献的教化工作者,经常须要打算说课稿,借助说课稿可以更好地提高老师理论素养和驾驭教材的实力。优秀的说课稿都具备一些什么特点呢?以下是我收集整理的勾股定理说课稿范文(通用3篇),仅供参考,欢迎大家阅读。勾股定理说课稿1一、说教材本课时是华师大版八年级(上)数学第14章其次节内容,是在驾驭勾股定理的基础上对勾股定理的应用之一。 勾股定理是我国古数学的一项宏大成就。勾股定理为我们供应了直角三角形的三边间的数量关系,它的逆定理为我们供应了推断三角形是否属于直角三角形的依据,也是判定两条直线是否相互垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。教材在编写时留意培育学生的动手操作实力和分析问题的实力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。据此,制定教学目标如下:1、学问和方法目标:通过对一些典型题目的思索,练习,能正确娴熟地进行勾股定理有关计算,深化对勾股定理的理解。2、过程与方法目标:通过对一些题目的探讨,以达到驾驭学问的目的。3、情感与看法目标:感受数学在生活中的应用,感受数学定理的美。教学重点:勾股定理的应用。教学难点:勾股定理的正确运用。教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。二、说教法和学法1、以自学辅导为主,充分发挥老师的主导作用,运用各种手段激发学习欲望和爱好,组织学生活动,让学生主动参加学习全过程。2、切实体现学生的主体地位,让学生通过视察,分析,探讨,操作,归纳理解定理,提高学生动手操作实力,以及分析问题和解决问题的实力。3、通过演示实物,引导学生视察,操作,分析,证明,使学生获得新知的胜利感受,从而激发学生钻研新知的欲望。三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,依据学生的认知规律和学习心理,教学程序设置如下:一、回顾问:勾股定理的内容是什么? 勾股定理揭示了直角三角形三边之间的关系,今日我们来学习这个定理在实际生活中的应用。二、新授课例1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路途是多少?(课本P57图14。2。1)学生取出自制圆柱,尝试从A点到C点沿圆柱侧面画出几条路途。思索:那条路途最短?如图,将圆柱侧面剪开展成一个长方形,从A点到C点的最短路途是什么?你画得对吗?蚂蚁从A点动身,想吃到C点处的食物,它沿圆柱侧面爬行的最短路途是什么?思路点拨:引导学生在自制的圆柱侧面上找寻最短路途;提示学生将圆柱侧面绽开成长方形,引导学生视察分析发觉“两点之间的全部线中,线段最短”。 学生在自主探究的基础上爱好高涨,气氛异样的活跃,他们发觉蚂蚁从A点往上爬到B点后顺着直径爬向C点爬行的路途是最短的!我也意外的发觉了这种爬法是正确的,但是课本上是顺着侧面往上爬的,我就告知学生:“课本中的圆柱体是没有上盖的”。只有这样课本上的解答才算是完全正确的。例2、(课本P58图14。2。3)思路点拨:厂门的宽度是足够的,这个问题的关键是视察当卡车位于厂门正中间时其高度是否小于CH,点D在离厂门中线0。8米处,且CDAB, 与地面交于H,找寻出RtOCD,运用勾股定理求出2。3m,CD= = =0。6,CH=0。6+2。3=2。9>2。5可见卡车能顺当通过 。具体解题过程看课本 引导学生完成P58做一做。三、课堂小练1、课本P58练习第1,2题。2、探究: 一门框的尺寸如图所示,一块长3米,宽2。2米的薄木板是否能从门框内通过?为什么?四、小结直角三角形在实际生活中有更为广泛的应用希望同学们能紧紧抓住直角三角形的性质,学透勾股定理的详细应用,那样就能很轻松的解决现实生活中的很多问题,达到事倍功半的效果。五、布置作业课本P60习题14。2第1,2,3题。勾股定理说课稿2一、 说教材分析1、 教材的地位和作用华师大版八年级上直角三角形三边关系是学生在学习数的开方和整式的乘除后的一段内容,它是学生在已经驾驭了直角三角形的有关性质的基础上进行学习的,它揭示了一个直角三角形三条边之间的数量关系,为后面解直角三角形的作好铺垫,它也是几何中最重要的定理,它将形和数亲密联系起来,在数学的发展中起着重要的作用。因此他的教化教学价值就详细体现在如下三维目标中:学问与技能:1、经验勾股定理的探究过程,体会数形结合思想。2、理解直角三角形三边的关系,会应用勾股定理解决一些简洁的实际问题。过程与方法:1、经验视察猜想归纳验证等一系列过程,体会数学定理发觉的过程,由特别到一般的解决问题的方法。2、在视察、猜想、归纳、验证等过程中培育学生的数学语言表达实力和初步的逻辑推理实力。情感、看法与价值观:1、通过对勾股定理历史的了解,感受数学文化,激发学习爱好。2、在探究活动中,体验解决问题方法的多样性,培育学生的合作意识和然所精神。3、让学生通过动手实践,增加探究和创新意识,体验探讨过程,学习探讨方法,逐步养成一种主动的生动的,自助合作探究的学习方式。由于八年级的学生具有肯定分析实力,但活动阅历不足,所以本节课教学重点:勾股定理的探究过程,并驾驭和运用它。教学难点:分割,补全法证面积相等,探究勾股定理。二、说教法学法分析:要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采纳了“引导探究式”的教学方法:先从学生熟知的生活实例动身,以生活实践为依托,将生活图形数学化,然后由特别到一般地提出问题,引导学生在自主探究与合作沟通中解决问题,同时也真正体现了数学课堂是学生自己的课堂。学法:我想通过“操作+思索”这样方式,有效地让学生在动手、动脑、自主探究与合作沟通中来发觉新知,同时让学生感悟到:学习任何学问的最好方法就是自己去探究。三、 说教学程序设计1、 故事引入新课,激起学生学习爱好。牛顿,瓦特的故事,让学生科学家的宏大成就多数都是在看似平淡无奇的现象中发觉和探讨出来的;生活中到处有数学,我们应当学会视察、思索,将学习与生活紧密结合起来。毕达哥拉斯的发觉引入新课。2、探究新知在这里我设计了四个内容:探究等腰直角三角形三边的关系边长为3、4、5为边长的直角三角形的三边关系学生画两直角边为2,6的直角三角形,探究三边的关系三边为a、b、c的直角三角形的三边的关系,(证明)勾股定理历史介绍,让学生体会勾股定理的文化价值。体现从特别到一般的发觉问题的过程。3、新知运用:举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用)在直角三角形中,已知 B=90° ,AB=6,BC=8,求AC。要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做?如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”、他们仅仅少走了 步路(假设2步为1米),却踩伤了花草、4、小结本课:学完了这节课,你有什么收获?老师补充:科学家的宏大成就多数都是在看似平淡无奇的现象中发觉和探讨出来的;生活中到处有数学,我们应当学会视察、思索,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思索。 勾股定是数学史上的明珠,证明方法有许多种,我们将在下一节课学习它。反思:教学设计主要是体现从特别到一般的学问形成过程,探究问题的设计上有点难,其次个问题应加个3,3为直角边的等腰直角三角形让学生分割或者补全,这样过度,降低3,4为直角边的探究探究;在2,6为直角边时,这个问题可以不用设计进去,就为后面的练习留足时间。探究时间较长,整个课程推行进度较慢,练习较少。对学生的启发不够,对学生的关注不够,学生对问题的思索不能刚好想出来,没有刚好很好的引导,启发,应让学生多一些思索的空间,并刚好交给思索的方法。学生反应不是太好,实力差,也或许是因为问题设计的较难,没有很好的体现出探究。预期的目标没有很好的达成,学生虽然驾驭了勾股定理,但探究热忱没有点燃,思维实力,动手实力,探究精神没有很好的得到发展。勾股定理说课稿3一、说教材分析:(一) 教材的地位与作用从学问结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形供应重要的理论依据,在现实生活中有着广泛的.应用。从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理这又是对学生进行爱国主义教化的良好素材,因此具有相当重要的地位和作用。依据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:学问技能、数学思索、问题解决、情感看法。其中方面,以我国数学文化为主线,激发学生酷爱祖国悠久文化的情感。(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探究过程。限于八年级学生的思维水平,我将面积法(拼图法)发觉勾股定理确定为本节课的难点,我将引导学生动手试验突出重点,合作沟通突破难点。二、说教学与学法分析教学方法 叶圣陶说过“老师之为教,不在全盘授予,而在相机诱导。”因此老师利用几何直观提出问题,引导学生由浅入深的探究,设计试验让学生进行验证,感悟其中所蕴涵的思想方法。学法指导 为把学习的主动权还给学生,老师激励学生采纳动手实践,自主探究、合作沟通的学习方法,让学生亲自感知体验学问的形成过程。三、说教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。首先,情境导入 古韵今风给出七巧八分图中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生视察并思索三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奇妙呢?寓教于乐,激发学生新奇、探究的欲望。其次步 追溯历史 解密真相勾股定理的探究过程就是本节课的重点,依照数学学问的按部就班、螺旋上升的原则,我设计如下三个活动。从上面低起点的问题入手,有利于学生参加探究。学生很简单发觉,在等腰三角形中存在如下关系。奇妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。视察发觉虽然直观,但面积计算更具劝服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简洁易行,但对于下一步探究一般直角三角形并不适用,具有局限性。因此老师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探究困难图形的面积做铺垫。突破等腰直角三角形的束缚,探究在一般状况下的直角三角形是否也存在这一结论呢?体现了“从特别到一般”的认知规律。老师给出边长单位长度分别为3、4、5的直角三角形,避开了学生因作图不精确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发觉平移的方法,旋转的方法,对于这两种新方法老师应给于表扬,确定学生的探讨成果,培育学生的类比、迁移以及探究问题的实力。运用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,变更三边长度三边关系不变,当为锐角或钝角时,三边关系就变更了,进而强调了命题成立的前提条件必需就是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。以上三个环节层层深化步步引导,学生归纳得到命题1,从而培育学生的合情推理实力以及语言表达实力。感性相识未必是正确的,推理验证证明我们的猜想。第三步 推陈出新 借古鼎新教材中干脆给出“赵爽弦图”的证法对学生的思维就是一种禁锢,老师创新运用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪慧才智证明勾股定理。这就是教学的难点也是重点,老师应给学生充分的自主探究的时间与空间,让学生的思维在相互探讨中碰撞、在相互学习中完善。老师深化到学生中间,视察学生探究方法接受学生的质疑,对于不同的拼图方案赐予确定。从而体现出“学生就是学习的主体,老师就是组织者、引导者与合作者”这一教学理念。学生会发觉两种证明方案。方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探究方法。方案2为学生自己探究的结果,论证之巧较方案1有异曲同工之妙。整个探究过程,让学生经验由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的骄傲感。板书勾股定理,进而给出字母表示,培育学生的符号意识。老师对“勾、股、弦”的含义以及古今中外对勾股定理的探讨做一个介绍,使学生感受数学文化,培育民族骄傲感和爱国主义精神。利用勾股树动态演示,让学生观赏数学的精致、美丽。第四步 取其精华 古为今用我根据“理解驾驭运用”的梯度设计了如下三组习题。(1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用第五步 温故反思 任务后延在课堂接近尾声时,我激励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种阅历。然后布置作业,分层作业体现了教化面对全体学生的理念。四、说教学评价在探究活动中,老师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。五、说设计说明本节课探究体验贯穿始终,展示沟通贯穿始终,习惯养成贯穿始终,情感教化贯穿始终,文化育人贯穿始终。采纳 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,呈现了我国古代数学绚烂的历史,激发学生再创数学辉煌的愿望。第13页 共13页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页第 13 页 共 13 页

    注意事项

    本文(2022年《勾股定理》说课稿范文(通用3篇).docx)为本站会员(w****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开