2022高二数学教学教案:线段的垂直平分线.docx
-
资源ID:10789576
资源大小:32.38KB
全文页数:7页
- 资源格式: DOCX
下载积分:10金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022高二数学教学教案:线段的垂直平分线.docx
2022高二数学教学教案:线段的垂直平分线 华蜜和幸运是须要代价的,天下没有免费的午餐!下面是课件范文网小编为您举荐高二数学教学教案:线段的垂直平分线。 一、教学目的: 1、使学生理解线段的垂直平分线的性质定理及逆定理,驾驭这两个定理的关系并会用这两个定理解决有关几何问题。 2、了解线段垂直平分线的轨迹问题。 3、结合教学内容培育学生的动作思维、形象思维和抽象思维实力。 教学重点: 线段的垂直平分线性质定理及逆定理的引入证明及运用。 教学难点: 线段的垂直平分线性质定理及逆定理的关系。 教学关键: 1、垂直平分线上全部的点和线段两端点的距离相等。 2、到线段两端点的距离相等的全部点都在这条线段的垂直平分线上。 教 具:投影仪及投影胶片。 二、教学过程: 一、提问 1、角平分线的性质定理及逆定理是什么? 2、怎样做一条线段的垂直平分线? 二、新课 1、请同学们在课堂练习本上做线段AB的垂直平分线EF(请一名同学在黑板上做)。 2、在EF上任取一点P,连结PA、PB量出PA=?,PB=?引导学生视察这两个值有什么关系? 通过学生的视察、分析得出结果 PA=PB,再取一点P'试一试仍旧有P'A=P'B,引导学生猜想EF上的全部点和点A、点B的距离都相等,再请同学把这一结论叙述成命题(用幻灯展示)。 定理:线段的垂直平分线上的点和这条线段的两个端点的距离相等。 这个命题,是我们通过作图、视察、猜想得到的,还得在理论上加以证明是真命题才能做为定理。 已知:如图,直线EF⊥AB,垂足为C,且AC=CB,点P在EF上 求证:PA=PB 如何证明PA=PB学生分析得出只要证RTΔPCARTΔPCB 证明:PC⊥AB(已知) ∴∠PCA=∠PCB(垂直的定义) 在ΔPCA和ΔPCB中 ∴ΔPCAΔPCB(SAS) 即:PA=PB(全等三角形的对应边相等)。 反过来,假如PA=PB,P1A=P1B,点P,P1在什么线上? 过P,P1做直线EF交AB于C,可证明ΔPA P1PB P1(SSS) ∴EF是等腰三角型ΔPAB的顶角平分线 ∴EF是AB的垂直平分线(等腰三角形三线合一性质) ∴P,P1在AB的垂直平分线上,于是得出上述定理的逆定理(启发学生叙述)(用幻灯展示)。 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 依据上述定理和逆定理可以知道:直线MN可以看作和两点A、B的距离相等的全部点的集合。 线段的垂直平分线可以看作是和线段两个端点距离相等的全部点的集合。 三、举例(用幻灯展示) 例:已知,如图ΔABC中,边AB,BC的垂直平分线相交于点P,求证:PA=PB=PC。 证明:点P在线段AB的垂直平分线上 ∴PA=PB 同理PB=PC ∴PA=PB=PC 由例题PA=PC知点P在AC的垂直平分线上,所以三角形三边的垂直平分线交于一点P,这点到三个顶点的距离相等。 四、小结 正确的运用这两个定理的关键是区分它们的条件与结论,加强证明前的分析,找出证明的途径。定理的作用是可证明两条线段相等或点在线段的垂直平分线上。 五、练习与作业 练习:第87页 1、2 作业:第95页 2、3、4 教案设计说明 线段的垂直平分线的性质定理及逆定理,都是几何中的重要定理,也是一条重要轨迹。在几何证明、计算、作图中都有重要应用。我讲授这节课是线段垂直平分线的第一节课,主要完成定理的引出、证明和初步的运用。 在设计教案时,我结合教材内容,对如何导入新课,引出定理以及证明进行了探究。在导入新课这一环节上我先让学生做一条线段AB的垂直平分线EF,在EF上取一点P,让学生量出PA、PB的长度,引导学生视察、探讨每个人量得的这两个长度之间有什么关系:得到什么结论?学生回答:PA=PB。然后再让学生取一点试一试,这两个长度也相等,由此引导学生猜想到线段垂直平分线的性质定理。在这一过程中让学生主动主动的参加到教学中来,使学生通过作图、视察、量一量再得出结论。从而把学问的形成过程转化为学生亲自参加、发觉、探究的过程。在教学时,引导学生分析性质定理的题设与结论,画图写出已知、求证,通过分析由学生得出证明性质定理的方法,这个过程既是探究过程也是调动学生动脑思索的过程,只有学生动脑思索了,才能真正理解线段垂直平分线的性质定理,以及证明方法。在此基础上再提出假如有两点到线段的两端点的距离相等,这样的点应在什么样的直线上?由条件得出这样的点在线段的垂直平分线上,从而引出性质定理的逆定理,由上述两个定理使学生再进一步知道线段的垂直平分线可以看作是到线段两端点距离的全部点的集合。这样可以帮助学生相识理论来源于实践又服务于实践的道理,也能提高他们学习的主动性,加深对所学学问的理解。在讲解例题时引导学生用所学的线段垂直平分线的性质定理以及逆定理来证,避开用三角形全等来证。最终总结点P是三角形三边垂直平分线的交点,这个点到三个顶点的距离相等。为了使学生当堂驾驭两个定理的敏捷运用,让学生做87页的两个练习,以达到巩固学问的目的。 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第7页 共7页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页第 7 页 共 7 页