2022七年级下册数学定理知识点汇总.docx
2022七年级下册数学定理知识点汇总 七年级下册数学定理学问点汇总地址:大望苑3栋2-3单元1楼TEL:25518853、13715295216北师大版初中数学定理学问点汇总七年级下册(北师大版)第一章整式的运算一.整式1.单项式由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式的系数是这个单项式的数字因数,作为单项式的系数,必需连同数字前面的性质符号,假如一个单项式只是字母的积,并非没有系数.一个单项式中,全部字母的指数和叫做这个单项式的次数.2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不行能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.3.整式单项式和多项式统称为整式.单项式整式代数式多项式其他代数式二.整式的加减¤1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2.括号前面是“”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幂的乘法同底数幂的乘法法则:amanamn(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要留意以下几点:法则运用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个详细的数字式字母,也可以是一个单项或多项式;指数是1时,不要误以为没有指数;不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;当三个或三个以上同底数幂相乘时,法则可推广为amanapamnp(其中m、n、p均为正数);公式还可以逆用:amnaman(m、n均为正整数)四幂的乘方与积的乘方1.幂的乘方法则:(am)namn(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.2.(am)n(an)mamn(m,n都为正数).3.底数有负号时,运算时要留意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3第1页an(当n为偶数时),一般地,(a)na(当n为奇数时).n4底数有时形式不同,但可以化成相同。5要留意区分(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。6积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)nanbn(n为正整数)。7幂的乘方与积乘方法则均可逆向运用。五.同底数幂的除法1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即amanamn(a0,m、n都是正数,且m>n).2.在应用时须要留意以下几点:法则运用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.任何不等于0的数的0次幂等于1,即a01(a0),如1001,(-2.50=1),则00无意义.1(a0,p是正整数),而pa-1-3-p-p0,0都是无意义的;当a>0时,a的值肯定是正的;当a对含有同一个字母的一次项系数是1的两个一次二项式相乘(xa)(xb)x2(ab)xab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到(mxa)(nxb)mnx2(mbma)xab七平方差公式¤1平方差公式:两数和与这两数差的积,等于它们的平方差,即(ab)(ab)a2b2。¤其结构特征是:公式左边是两个二项式相乘,两个二项式中第一项相同,其次项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八完全平方公式¤1完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,¤即(ab)2a22abb2;¤口决:首平方,尾平方,2倍乘积在中心;¤2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。¤3在运用完全平方公式时,要留意公式右边中间项的符号,以及避开出现(ab)2a2b2这样的错误。九整式的除法¤1单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特殊留意符号。其次章平行线与相交线一台球桌面上的角1互为余角和互为补角的有关概念与性质假如两个角的和为90°(或直角),那么这两个角互为余角;假如两个角的和为180°(或平角),那么这两个角互为补角;留意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二探究直线平行的条件两条直线相互平行的条件即两条直线相互平行的判定定理,共有三条:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。三平行线的特征第3页平行线的特征即平行线的性质定理,共有三条:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。四用尺规作线段和角1关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。2关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以随意一点为圆心,随意长度为半径作一个圆;以随意一点为圆心,随意长度为半径画一段弧。第三章生活中的数据1科学记数法:对随意一个正数可能写成a×10n的形式,其中1a10,n是整数,这种记数的方法称为科学记数法。¤2利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,全部的数字都叫做这个数的有效数字。¤3统计工作包括:设定目标;收集数据;整理数据;表达与描述数据;分析结果。第四章概率¤1随机事务发生与不发生的可能性不总是各占一半,都为50%。2现实生活中存在着大量的不确定事务,而概率正是探讨不确定事务的一门学科。3了解必定事务和不行能事务发生的概率。必定事务发生的概率为1,即P(必定事务)=1;不行能事务发生的概率为0,即P(不行能事务)=0;假如A为不确定事务,那么0三角形三边关系的另一特性质:三角形随意两边之差小于第三边。对于这两特性质,要全面理解,驾驭其实质,应用时才不会出错。设三角形三边的长分别为a、b、c则:一般地,对于三角形的某一条边a来说,肯定有|b-c|ab+c成立;反之,只有|b-c|ab+c成立,a、b、c三条线段才能构成三角形;特别地,假如已知线段a最大,只要满意b+ca,那么a、b、c三条线段就能构成三角形;假如已知线段a最小,只要满意|b-c|a,那么这三条线段就能构成三角形。3关于三角形的内角和三角形三个内角的和为180°直角三角形的两个锐角互余;一个三角形中至多有一个直角或一个钝角;一个三角中至少有两个内角是锐角。4关于三角形的中线、高和中线三角形的角平分线、中线和高都是线段,不是直线,也不是射线;随意一个三角形都有三条角平分线,三条中线和三条高;随意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。AFECBFACBD锐角三角形CAD直角三角形BE钝角三角形D鹏翔教图1二图形的全等¤能够完全重合的图形称为全等形。全等图形的形态和大小都相同。只是形态相同而大小不同,或者说只是满意面积相同但形态不同的两个图形都不是全等的图形。四全等三角形¤1关于全等三角形的概念能够完全重合的两个三角形叫做全等三角形。相互重合的顶点叫做对应点,相互重合的边叫做对应边,相互重合的角叫做对应角所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。2全等三角形的对应边相等,对应角相等。¤3全等三角形的性质常常用来证明两条线段相等和两个角相等。五探三角形全等的条件1三边对应相等的两个三角形全等,简写为“边边边”或“SSS”2有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”3两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”4两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”六作三角形1已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。第5页2已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。3已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。八探究直三角形全等的条件1斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。2直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。直角三角形的其他判定方法可以归纳如下:两条直角边对应相等的两个直角三角形全等;有一个锐角和一条边对应相等的两个直角三角形全等。三条边对应相等的两个直角三角形全等。第七章生活中的轴对称1假如一个图形沿某条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。2角平分线上的点到角两边距离相等。3线段垂直平分线上的随意一点到线段两个端点的距离相等。4角、线段和等腰三角形是轴对称图形。5等腰三角形的顶角平分线、底边上的高、底边上的中线相互重合,简称为“三线合一”。6轴对称图形上对应点所连的线段被对称轴垂直平分。7轴对称图形上对应线段相等、对应角相等。(注:表示重点部分;¤表示了解部分;表示仅供参阅部分;)第6页扩展阅读:北师大版七年级下册数学定理学问点汇总北师大版初中数学定理学问点汇总七年级下册(北师大版)第一章整式的运算一.整式1.单项式由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。单项式的系数是这个单项式的数字因数,作为单项式的系数,必需连同数字前面的性质符号,假如一个单项式只是字母的积,并非没有系数.一个单项式中,全部字母的指数和叫做这个单项式的次数.2.多项式几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不行能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.3.整式单项式和多项式统称为整式.单项式整式代数式多项式其他代数式二.整式的加减¤1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2.括号前面是“”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幂的乘法mnmn同底数幂的乘法法则:a(m,n都是正数)是幂的运算中最基本的法aa则,在应用法则运算时,要留意以下几点:法则运用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个详细的数字式字母,也可以是一个单项或多项式;指数是1时,不要误以为没有指数;不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;mnpmnpaaa当三个或三个以上同底数幂相乘时,法则可推广为a(其中m、n、p均为正数);mnmnaa(m、n均为正整数)公式还可以逆用:a四幂的乘方与积的乘方mnmn1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来a)a的,但两者不能混淆.mnnmmn2.(.a)(a)a(m,n都为正数)3.底数有负号时,运算时要留意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3na(当n为偶数时),一般地,(a)na(当n为奇数时).n4底数有时形式不同,但可以化成相同。5要留意区分(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。6积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂nnn相乘,即(ab)ab(n为正整数)。7幂的乘方与积乘方法则均可逆向运用。五.同底数幂的除法mnmn1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即aaa(a0,m、n都是正数,且m>n).2.在应用时须要留意以下几点:法则运用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0.00任何不等于0的数的0次幂等于1,即a1,(-2.50=1),则1(a0),如1000无意义.任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即1app(a0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值肯定是a11正的;当a即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要留意以下几点:单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;运算时要留意积的符号,多项式的每一项都包括它前面的符号;在混合运算时,要留意运算依次。3多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要留意以下几点:多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;多项式相乘的结果应留意合并同类项;对含有同一个字母的一次项系数是1的两个一次二项式相乘2,其二次项系数为1,一次项系数等于两个因(xa)(xb)x(ab)xa式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到2(mxa)(nxb)mnx(mbma)xa七平方差公式¤1平方差公式:两数和与这两数差的积,等于它们的平方差,22即(。ab)(ab)ab¤其结构特征是:公式左边是两个二项式相乘,两个二项式中第一项相同,其次项互为相反数;公式右边是两项的平方差,即相同项的平方与相反项的平方之差。八完全平方公式¤1完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,222¤即(;ab)a2abb¤口决:首平方,尾平方,2倍乘积在中心;¤2结构特征:公式左边是二项式的完全平方;公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。¤3在运用完全平方公式时,要留意公式右边中间项的符号,以及避开出222现(这样的错误。ab)ab九整式的除法¤1单项式除法单项式单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;¤2多项式除以单项式多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特殊留意符号。其次章平行线与相交线一台球桌面上的角1互为余角和互为补角的有关概念与性质假如两个角的和为90°(或直角),那么这两个角互为余角;假如两个角的和为180°(或平角),那么这两个角互为补角;留意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。它们的主要性质:同角或等角的余角相等;同角或等角的补角相等。二探究直线平行的条件两条直线相互平行的条件即两条直线相互平行的判定定理,共有三条:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行。三平行线的特征平行线的特征即平行线的性质定理,共有三条:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补。四用尺规作线段和角1关于尺规作图尺规作图是指只用圆规和没有刻度的直尺来作图。2关于尺规的功能直尺的功能是:在两点间连接一条线段;将线段向两方向延长。圆规的功能是:以随意一点为圆心,随意长度为半径作一个圆;以随意一点为圆心,随意长度为半径画一段弧。第三章生活中的数据1科学记数法:对随意一个正数可能写成a×10n的形式,其中1a10,n是整数,这种记数的方法称为科学记数法。¤2利用四舍五入法取一个数的近似数时,四舍五入到哪一位,就说这个近似数精确到哪一位;对于一个近似数,从左边第一个不是0的数字起,到精确到的数位止,全部的数字都叫做这个数的有效数字。¤3统计工作包括:设定目标;收集数据;整理数据;表达与描述数据;分析结果。第四章概率¤1随机事务发生与不发生的可能性不总是各占一半,都为50%。2现实生活中存在着大量的不确定事务,而概率正是探讨不确定事务的一门学科。3了解必定事务和不行能事务发生的概率。必定事务发生的概率为1,即P(必定事务)=1;不行能事务发生的概率为0,即P(不行能事务)=0;假如A为不确定事务,那么0友情提示:本文中关于七年级下册数学定理学问点汇总给出的范例仅供您参考拓展思维运用,七年级下册数学定理学问点汇总:该篇文章建议您自主创作。 本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第15页 共15页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页第 15 页 共 15 页