欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高一数学教案:《等比数列的前n项和》.docx

    • 资源ID:11097648       资源大小:17.76KB        全文页数:5页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高一数学教案:《等比数列的前n项和》.docx

    2022年高一数学教案:等比数列的前n项和假如一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。下面是课件网小编带来的高一数学教案:等比数列的前n项和。【教学目标】1.把握等比数列前 项和公式,并能运用公式解决简洁的问题.(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想熟识等比数列前 项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的敏捷运用,进一步渗透方程的思想、分类探讨的思想、等价转化的思想.3.通过公式推导的教学,对学生进行思维的严谨性的练习,培育他们实事求是的科学看法.【教材分析】(1)学问结构先用错位相减法推出等比数列前 项和公式,而后运用公式解决一些问题,并将通项公式与前 项和公式结合解决问题,还要用错位相减法求一些数列的前 项和.(2)重点、难点分析教学重点、难点是等比数列前 项和公式的推导与应用.公式的推导中蕴含了丰富的数学思想、方法(如分类探讨思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前 项和公式的要求,不单是要记住公式,更重要的是把握推导公式的方法. 等比数列前 项和公式是分状况探讨的,在运用中要非凡注意 和 两种状况.【教学建议】(1)本节内容分为两课时,一节为等比数列前 项和公式的推导与应用,一节为通项公式与前 项和公式的综合运用,另外应补充一节数列求和问题.(2)等比数列前 项和公式的推导是重点内容,引导学生视察实例,发觉规律,归纳总结,证明结论.(3)等比数列前 项和公式的推导的其他方法可以给出,提高学生学习的爱好.(4)编拟例题时要全面,不要忽视 的状况.(5)通项公式与前 项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大.(6)补充可以化为等差数列、等比数列的数列求和问题.【教学设计示例】课题:等比数列前 项和的公式【教学目标】(1)通过教学使学生把握等比数列前 项和公式的推导过程,并能初步运用这一方法求一些数列的前 项和.(2)通过公式的推导过程,培育学生猜想、分析、综合实力,提高学生的数学素养.(3)通过教学进一步渗透从非凡到一般,再从一般到非凡的辩证观点,培育学生严谨的学习看法.【教学重点,难点】教学重点是公式的推导及运用,难点是公式推导的思路.【教学用具】幻灯片,课件,电脑.【教学方法】引导发觉法.【教学过程】一、新课引入:(问题见教材第129页)提出问题: (幻灯片)二、新课讲解:式中有64项,后项与前项的比为公比2,当每一项都乘以2后,中间有62项是对应相等的,作差可以相互抵消.(板书)即 , , -得 即 .由此对于一般的等比数列,其前 项和 ,如何化简?(板书)等比数列前 项和公式仿照公比为2的等比数列求和方法,等式两边应同乘以等比数列的公比 ,即(板书) 两端同乘以 ,得,-得 ,(提问学生如何处理,适时提示学生注意 的取值)当 时,由可得 (不必导出,但当时设想不到)当 时,由得 .于是反思推导求和公式的方法错位相减法,可以求形如 的数列的和,其中 为等差数列, 为等比数列.(板书)例题:求和: .设 ,其中 为等差数列, 为等比数列,公比为 ,利用错位相减法求和.解: ,两端同乘以 ,得两式相减得于是 .说明:错位相减法事实上是把一个数列求和问题转化为等比数列求和的问题.公式其它应用问题注意对公比的分类探讨即可.三、小结:1.等比数列前 项和公式推导中蕴含的思想方法以及公式的应用;2.用错位相减法求一些数列的前 项和.四、作业:略 .五、板书设计:略第5页 共5页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页第 5 页 共 5 页

    注意事项

    本文(2022年高一数学教案:《等比数列的前n项和》.docx)为本站会员(l***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开