欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    在“变与不变”中感悟数学模型思想.docx

    • 资源ID:11242002       资源大小:32.65KB        全文页数:8页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    在“变与不变”中感悟数学模型思想.docx

    在“变与不变”中感悟数学模型思想【摘要】问题的解决离不开模型思想,而模型思想的感悟和形成也必需要经验抽象、归纳、推理等问题解决的过程。老师在教学中可以有意识地设计一题多解、一题多变或多题一解等问题解决环节,引导学生在“变与不变”中经验视察、猜想、类比、分析、归纳、表达、体验的学习过程,把握数学学问的本质,体会模型思想的结构化内涵和一般化思想,从而帮助学生感悟并初步形成模型思想。【关键词】问题解决;模型思想;数学学问模型思想是义务教化数学课程标准(2022年版)新增加的核心概念。数学模型就是依据特定的探讨目的,采纳形象化的数学语言,去抽象、概括地表述所探讨对象的主要特征、关系所形成的一种数学结构1。利用数学方法解决实际问题时,首先须要建立数学模型。可见,问题的解决离不开模型思想,而模型思想的形成也必需要经验抽象、归纳、推理等问题解决的过程。所以对模型思想的感悟是在问题解决的过程中实现的。笔者就如何在问题解决的过程中培育学生的模型思想谈一些体会。一、在一题多解中感知模型的数学本质模型思想的建立是学生体会和理解数学与外部世界联系的基本途径,包括用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和改变规律。数学是抽象的,只有深化了解数学相关问题的本质特点,才能建立起真正的模型,而模型又能使我们对数学本质获得更全面、更深刻的相识和理解。例如老师在执教六年级列方程解决问题时,提出“甲、乙两城市间的铁路经过技术改造后,列车在两城市间的运行速度从101 km/h提高到120 km/h,运行时间缩短了2 h。甲、乙两城市之间的路程是多少?”这一问题后,学生列出了两个迥然不同的方程:(x/101)-(x/120)=2和101x=120(x-2)。笔者先不作说明,而是请学生思索这两个方程是否都可行。学生在比较、视察后发觉,第1个方程是设甲、乙两城市间的路程为x,此方程的等量关系为:原来须要的时间-提速后须要的时间=2 h。而第2个方程对应的等量关系为:提速前甲、乙两城市间的路程=提速后甲、乙两城市间的路程,其中x表示的是提速前所需的时间。通过辨析,老师着重引导学生在对比、沟通中深刻感受两个方程虽然不同,但只要找到等量关系,依据等量关系列出方程就能解决问题。整个解题过程老师激励学生先自主尝试,再组织学生视察、比较,引导学生逐步发觉一题多解的共性,让学生充分感受数学问题中等量关系的重要性,深刻感悟方程构建的数学本质。这时学生学到的不仅仅是用方程解决问题,更重要的是懂得从详细的方程中抽象出数学本质,增加学生抽象概括的数学观念和数学意識,并积累建模阅历。二、在一题多变中建立模型的结构化内涵数学模型是一种结构,要在小学数学课堂中引导学生感悟模型思想,须要老师有意识地呈现隐含某一模型思想的结构性素材,引导学生在问题解决中感悟素材中内隐的、本质的结构。例如老师在执教苏教版数学四年级上册“解决问题的策略”第一课的例题后,请学生依据题中条件(如图1),试着提出其他的数学问题(三步计算的问题)。在学生发散思维,提出多个问题之后,老师用课件呈现学生所提出的问题并追问:图1左侧的这些问题有什么相同之处?图1右侧呢?图1左右两侧相对应的两个问题有哪些相同之处或存在什么联系?学生在比较思索中感受到不同的问题其实有着相同的内在联系,例如对于图1左侧的问题,在解决的过程中所涉及的数量关系(数学结构)都是“两积之差”,而右侧全部问题的数量关系均为“两积之和”。若是左右两侧联系对比,学生会发觉不同问题所对应的树木类型相同,不同的只是运算类型。这个过程学生虽未动笔解题,但能体会到数学模型在解决问题中具有举一反三、触类旁通的效果。接下来,老师引导学生接着往下思索:假如是其他条件,还可能是什么条件?依据这些条件又可以提出哪些数学问题?学生在依据条件提出相应问题的基础上,小组合作自编条件并提出数学问题(如图2)。学生思维迸发,创编新的条件,自然而然衍生出新的问题。如图2,整个数学模型变成了“两商之和”和“两商之差”的问题。因为有了前面的结构化阅历,所以这个问题对于学生而言就不难解决了。通过上述学习,学生在类比、归纳中强化了模型的稳定性和结构性,巩固了基本数学问题的解决方法,提高了数学学习实力,培育了结构化思维,深刻感受到数学建模的价值。三、在多题一解中凸显模型的一般化思想义务教化数学课程标准(2022年版)指出,数学教学应当让学生亲身经验将实际问题抽象成数学模型并理解运用。从某种意义上来讲,模型思想要求我们将一个问题的解决拓展为一类问题的解决。例如在苏教版数学六年级下册“工程问题”一课中,老师在引导学生解决问题:“修一段420米长的路,甲队单独修须要10天完成,乙队单独修须要15天完成。假如两队合修,几天能够完成?”后,将总路程改为“200米”“1800米”,学生惊异地发觉不管怎么变更总路程,工作时间都是6天。老师接着引导学生逐步抽象概括,在比较辨析中提炼出工程问题的基本数量关系,并适时删除路程条件,学生沟通探讨后得出以下解法:1÷(1/10)+(1/15)=6(天)。老师相机指出:像这种问题在数学上叫作工程问题,它的特点是把工作总量看作单位“1”。在教学中,老师首先引导学生通过视察、比较和分析这些题目之间的联系,抽象出“工作总量可以看作单位1”这一规律,然后再运用这一规律解决更多相关的问题,这就是模型思想一般化的魅力。最终,老师接着引导学生将习得的方法尝试解决以下问题。问题1一批货物,大车单独运,10次可以运完,小车单独运,15次可以运完。假如大车和小车合运,几次可以运完?问题2甲、乙两地相距300千米,快车3小时可以行完全程,慢车6小时可以行完全程。快车和慢车同时从甲、乙两地相对开出,经过几小时可以相遇?学生在解决问题的过程中发觉运货问题、相遇问题与修路问题,都可以归结为同一类问题,且都可以根据工程问题的方法来解决。这一教学环节不仅加深了学生对工程问题的特点与规律的理解,还帮助学生更好地实现了对数学问题的抽象概括,即一般化。实践证明,老师可以有意识地设计一题多解、一题多变或多题一解等问题解决环节,引导学生在“变与不变”中把握数学学问的本质,学会用数学的眼光视察生活,用数学的思维方式思索问题,经过结构化、一般化等学习过程,不断提高学生学习数学的爱好和应用意识,同时帮助学生初步形成模型思想。参考文献:1徐利治.数学方法论选讲M.武汉:华中工学院出版社,11013.(责任编辑:陆顺演)【作者简介】金妤茜,一级老师,苏州市教坛新苗,苏州工业园区学科带头人。 猜你喜爱 模型思想问题解决数学学问 探究中学化学问题解决教学的实施策略新课程·中学(2022年9期)2022-11-14小学数学行程问题教学方法探讨新课程探讨·中旬(2022年6期)2022-09-16用画图法分析问题小学教学参考(数学)(2022年12期)2022-01-15认知心理学视阈下翻译问题类型及其解决策略探讨阜阳职业技术学院学报(2022年1期)2022-05-14数学学问在于应用中学课程辅导·教学探讨(2022年24期)2022-12-06小学生计算建模起点现状调查探讨中学课程辅导·老师教化(中)(2022年3期)2022-04-14对小学数学教学中渗透模型思想的几点看法科学与财宝(2022年2期)2022-03-15小学数学教学中培育学生模型思想初探亚太教化(2022年36期)2022-01-17小学数学教学中要激发学生的创建精神新课程·上旬(2022年10期)2022-12-26从生活中体会数学学问的应用数学大世界·初中生辅导版(2022年2期)2022-03-08 第8页 共8页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页第 8 页 共 8 页

    注意事项

    本文(在“变与不变”中感悟数学模型思想.docx)为本站会员(h****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开