最优控制的计算方法方案课件.ppt
12最优控制的计算方法最优控制的计算方法3最优控制的计算方法最优控制的计算方法 4最优控制的计算方法最优控制的计算方法0UH),(),(min*tUXHtUXHUHXXH561、梯度法、梯度法0KgKKXKUKUH)()KKHgU71、梯度法、梯度法KKKgKKKKgUU1)()()(1KKKUJUJUJ1 KKKg81、梯度法、梯度法uxx210)0(x1022)(21dtuxJ0) 1 (0uxuxH222)(21xxxH291、梯度法、梯度法0)(0tu101c0)(0tudtxdx2ctx111010)()(0ttxtx(0)10 x101、梯度法、梯度法)(0tx0) 1 (00201( )1 (1 10 ) /121(1)02tt121/)101 (1 21)()()(2001tuHtutu1K00()( )HtuuuH111、梯度法、梯度法01)(1tu最优值)(0tuut10和最优值)(tx)(0txxt)(tx)(1tu121、梯度法、梯度法13),(,)(2121nTTnaaaaxxxXQXXQXXT),(CXaQXXXFT),(21)(142、共轭梯度法、共轭梯度法0),(QYXQYXTKP, 2, 1, 0KKPKKKKPXX1,0,1,2,KPK 152、共轭梯度法、共轭梯度法QKPK1KP1KKKKPgP0),(1KKQPP00Pg ),(),(0111KKKKKKQPPgQPP),(),(111KKKKKQPPQPgK),(),(111KKKKKQPPQPg162、共轭梯度法、共轭梯度法jixx ,2()()1, ijF XQi jnx x QXXQXXT),(CXaQXXXFT),(21)(,21211),(),(KKKKKKKgggggg172、共轭梯度法、共轭梯度法KKKKPXX1212KKKgg00KKXFg)(001,gPPgPKKKK182、共轭梯度法、共轭梯度法KtutuKKuHuHtggK)()()()()()(tgKfttKKTKKKtgdttgtgtgtg02)()()()(),(192、共轭梯度法、共轭梯度法)(),(0tutuK)(0tX0tft)(tXK)(ftft0t)(tKkuuKuHg)(212)()(tgtgKKK001KKKKPgP00gP 202、共轭梯度法、共轭梯度法1 KK)()()(1KKKuJuJuJKKKKKKPuJPuJ0minKKKKPtutu)()(1212、共轭梯度法、共轭梯度法)(tuJ) 1 (2xJ 21)0(11xux 0)0(21)1 (2212xuuxux 2220( )Htcx )1 (211uxH212121)1(uuxuuH222、共轭梯度法、共轭梯度法11(1)(1)0u 1)(2t22(1)11(1)Jcx0) 1 () 1 () 1 (111xJx0)(0tu1, 0221121xxx1)(,21)(,21)(010201ttttxtx111(0)2xux22121(1)(0)02xu xuux232、共轭梯度法、共轭梯度法02212100)()()(uxuHtgttx251211020102012500tgP)25()()(00001tPtutu1u)25()(01ttx01002215515( )1()( )()()2222x ttx ttt111(0)2xux22121(1)(0)02xu xuux2( )1t11(1)(1)0u 242、共轭梯度法、共轭梯度法210151( )()222tx tt)82581512138()()41526(2)(2342023012tttttttttx2000022232002551515( )1()()()()2222222115131525()() ()2242448tx tttttttttt )25()(01ttx11(0)2x2(0)0 x01002215515( )1()( )()()2222x ttx ttt1( )x t252、共轭梯度法、共轭梯度法2002)(2497124921) 1 ( xJ01297124900J097490)25(9749)(1ttu)25(97491 1t9711945119449)(211ttt1)(12t2( )1t11(1)(1)0u 262、共轭梯度法、共轭梯度法12212111)()()(uxuHtg97229748t210210220211194192)25()97229748()()(dttdtttgtg2220111194901619418816)25(19419297229748tttPgP272、共轭梯度法、共轭梯度法)194901619418816()25(9749)()(2211112ttPtutu2( )u t) 1)()()(),(22212221tttxtx和1196194123)(2 ttu)() 1 (12fxJ282、共轭梯度法、共轭梯度法110,nPPPnngP)()(2tutu0)()(2221212uxuH290),(UtUXH),(tXUU),(tXUUnRtY2)( )( )( )TY tX ttHXXH301、边界迭代法、边界迭代法), 1()(qitxfi), 1()(nqitfi),(tYgY )(ftfft)(Tnqqtttxtxt)()(),(),()(11311、边界迭代法、边界迭代法)(0t)(0t)()(0ttf)(0tX)(0t)(tY)(tZ)(ft)(0t)()(0ttf)(0t)(ftf)()(00ttTnn)()()()()(0000tttttTf0 ( )t321、边界迭代法、边界迭代法0()( )ifjtt )()(0000)()()(ttjfiTjjttZt)()()()()(1000ffTttttt)(0t331、边界迭代法、边界迭代法10)(0tK)(fKt)(0tK)()()()()(10001fKfKTKKttttt)(0tK)(01tK)()(fKftt341、边界迭代法、边界迭代法0uH),(tXuu)()(fkftt)(0t)(0tK)(0tXftt 到0)(),(ttXKK)(fKt)(01tK1 KKT351、边界迭代法、边界迭代法)(0t)(0t)(ft)(ft)()()()()(0000tttttTf361、边界迭代法、边界迭代法)(tu)(uJ1 . 00221)()(duuxuJ5)0(121xxx 5)0(414. 04 . 1232212xuxxxx ) 1 . 0(1x) 1 . 0(2x0) 1 . 0() 1 . 0(21)(0201tt(和)(1ft)(2ft371、边界迭代法、边界迭代法3800)(XtXfft)(TYX),(tYgY )(tYK)(tYK1KY1 , 0)()(),(11KYYYgtYgYKKKKK392、拟线性化法、拟线性化法njXtXtYjjKj2 , 1)()(0001nnnjttYjffjfKj2, 2, 1)()(1)(),()(11KKKKKKYYgtYgYYgY)()(11tYtAYKKKKKKYgtA)()(11(, )() ()KKKKKgYg YtYYY1( )( ) (1, 2, , 2 )KKiiiYtYtin)(),()(KKKKYYgtYgt402、拟线性化法、拟线性化法)(tuJ1022)(21dtuxJ2(0)10 xxux u )()(21222uxuxH0uuH(0)10 x(1)0(1)X212( , )2gxxYg Y tgxx 412、拟线性化法、拟线性化法)(),()(KKKKYYgtYgtKKKKKKKKKKxxxxxx212122)(2KKKKKKxxgxggxgYgtA21212)()(2211KKKxx2)(2422、拟线性化法、拟线性化法)(tAK)(tK10)0(1Kx0) 1 (1K)(1tYK)()(11tYtAYKKKK43 。44小结小结45小结小结 46小结小结)(tYK),(1tYK)(0tY)(0t人有了知识,就会具备各种分析能力,明辨是非的能力。所以我们要勤恳读书,广泛阅读,古人说“书中自有黄金屋。”通过阅读科技书籍,我们能丰富知识,培养逻辑思维能力;通过阅读文学作品,我们能提高文学鉴赏水平,培养文学情趣;通过阅读报刊,我们能增长见识,扩大自己的知识面。有许多书籍还能培养我们的道德情操,给我们巨大的精神力量,鼓舞我们前进。