函数极限的证明(精选多篇).doc
函数极限的证明(精选多篇)第一篇:函数极限的证明函数极限的证明(一)时函数的极限:以时和为例引入.介绍符号:的意义,的直观意义.定义(和.)几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证(二)时函数的极限:由考虑时的极限引入.定义函数极限的“”定义.几何意义.用定义验证函数极限的基本思路.例4验证例5验证例6验证证由=为使需有为使需有于是,倘限制,就有例7验证例8验证(类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义:介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:th类似有:例10证明:极限不存在.例11设函数在点的某邻域内单调.若存在,则有=2函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限:,.以下以极限为例讨论性质.均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性(不等式性质):th4若和都存在,且存在点的空心邻域,使,都有证设=(现证对有)註:若在th4的条件中,改“”为“”,未必就有以举例说明.5.迫敛性:6.四则运算性质:(只证“+”和“”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用.在计算一些简单极限时,有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质,把所求极限化为基本极限,代入基本极限的值,即计算得所求极限.例1(利用极限和)例2例3註:关于的有理分式当时的极限.例4例5例6例7第二篇:函数极限证明函数极限证明记g(x)=lim(1/n),n趋于正无穷;下面证明limg(x)=maxa1,.am,x趋于正无穷。把maxa1,.am记作a。不妨设f1(x)趋于a;作b a =0,m 那么存在n1,当x n1,有a/m =f1(x)注意到f2的极限小于等于a,那么存在n2,当x n2时,0 =f2(x)同理,存在ni,当x ni时,0 =fi(x)取n=maxn1,n2.nm;那么当x n,有(a/m)n =f1(x)n =f1(x)n+.fm(x)n所以a/m =(1/n)第三篇:二元函数极限证明二元函数极限证明设p=f(x,y),p0=(a,b),当pp0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。我们必须(转载需注明第 3 页 共 3 页