欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年初二数学上学期期末复习建议.docx

    • 资源ID:11634299       资源大小:26.86KB        全文页数:21页
    • 资源格式: DOCX        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年初二数学上学期期末复习建议.docx

    2022年初二数学上学期期末复习建议 初二数学上学期期末复习建议 一、考试范围 第十二章 全等三角形 第十三章 轴对称 第十四章 因式分解 第十五章 分式 第十九章 一次函数 二、复习建议 1.复习安排 老师制定周密的复习安排,落实到每一节的复习支配,并向学生明确这个复习安排,让学生学生能同步或主动地制定自己的有针对性地复习安排。 2.复习内容 (1)基础学问与技能、基本方法和解题阅历 首先回来教材、笔记,通过学问的复习理清所学,构建学问网络;其次精选典型例题,落实基本方法、基本计算、基本证明,同时强调解题规范;最终从提高应试实力和综合素养的角度上来说,归纳解题方法(如证明线段、角相等的方法),了解命题的方法。 (2)查缺补漏 作业中的错题也是例题及习题的最好选材。针对学生以前出现的错误类型, 应纠其错因,再次进行巩固练习。对第一轮新知传授时未讲到的较综合内容,可在此时讲解,让学生感到复习有簇新感,达到螺旋上升的目的。 (3)实力培育 通过练习和总结,让学生跳出思维定势,形成学科实力。遇到新问题时,能通过仔细阅读审题,动手操作,画图视察计算,抽象概括出结论,主动运用函数与方程、转化、数形结合、分类与整合等思想,并通过逻辑推理(包括代数中的推理)和合理运算来证明解决。 3.复习支配 (1)基础复习,查缺补漏 (课时:2+2+1+2+2) (2)专题复习+综合题复习 (可针对于考试题型) (3)综合练习(可穿插在复习之中) 三、各章内容举例 第十二章 全等三角形 全等三角形的判定和性质 1. 如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形 状的玻璃,那么最省事的方法是带( )去配. A. B. C. D.和 2. 依据下列已知条件, 不能唯一确定ABC的大小和形态的是( ) . A. AB=3, BC=4, AC=5 B. AB=4, BC=3, A=30 C. A=60, B=45, AB=4 D. C=90, AB=6, AC = 5 3. 如图, 已知ABC, 则甲、乙、丙三个三角形中和ABC全等的是( ) . A. 只有乙 B. 只有丙 C. 甲和乙 D. 乙和丙 4. 已知: 如图, AC、BD相交于点O, A = D, 请你再补充一个条 件, 使AOBDOC, 你补充的条件是_. 5. 如图,已知ABC中,点D为BC上一点,E、F两点分别在 边AB、AC上,若 BE=CD, BD=CF, B=C, A=50, 则EDF=_. 6. 用直尺和圆规作一个角等于已知角,如图, 能得出 的依据是 _ _. 8. 假如满意条件ABC=30,AC=1, BC=k(k0)的ABC是唯一的,那么k的取值范围是_. 7. 如图,点E,F在BC上,BE=CF,A=D,B=C, AF与DE交于O.求证:AB=DC; 9. 已知: 如图, CB = DE, B = E, BAE = CAD. 求证: ACD = ADC. 10. 如图,点E在ABC外部,点D在边BC上,DE交AC于F, 若1=2=3, AC=AE. 求证:ABCADE. 11. 如图,AC=BD,ADAC,BCBD. 求证:AD=BC. 12.已知:如图,B、A、C三点共线,并且RtABDRtECA,M是DE的中点. (1)推断ADE的形态并证明; (2)推断线段AM与线段DE的关系并证明; (3)推断MBC的形态并证明. 角平分线的性质和判定 1. 如图,已知 , ,垂足分别为A,B.则下列结论:(1) ;(2) 平分 ;(3) ;(4) ,其中肯定成立的有( )个. A.1 B.2 C.3 D.非以上答案 2. 如图,RtABC中,C=90,ABC的平分线BD交AC于D,若CD=3cm,CB=4cm,则点D到AB的距离DE是( ). A.5cm B.4cm C.3cm D.2cm 3. 如右图,ABC是等腰直角三角形,C=90,BD平分CBA交AC于点D,DEAB于E.若ADE的周长为8cm,则AB =_ cm. 常见协助线构造图形(依据已知条件,利用变换的思想) 截长补短线段和差,角平分线条件下对称地构造全等 倍长与中点有关的线段,延长相交构造中心对称型的全等 作平行或作垂直角分线条件下,构造定理图形 补全等腰三角形 角分线和垂直的条件 1.已知,如图,B=C=90,M是BC的中点,DM平分ADC. (1)求证:AM平分DAB; (2)猜想AM与DM的位置关系如何并证明你的结论. 2.如图,ACBD,AE、BE分别平分CAB、ABD, 求证:AB=AC+BD. 3.已知:如图,在ABC中,AD是ABC的角平分线,E、F分别是AB、AC上一点,并且有EDF+EAF=180.试推断DE和DF的大小关系并说明理由. 4.已知: 如图, 四边形ABCD中, AC平分BAD, CEAB于E, 且B +D = 180. 求证: 2AE = AD + AB. 5.如图,在ABC,B=60,BAC、BCA的平分线AD、CE交于点O, (1)猜想OE与OD的大小关系,并说明你的理由; (2)猜想AC与AE、CD的关系,并说明你的理由. 6、 正方形ABCD中,M是AB上一点,E是AB延长线上一点,MNDM且交CBE的平分线于N. (1)试推断线段MD与MN的关系,并说明理由. (2)若点M在AB延长线上,其它条件不变,上述结论还成立吗试说明理由. 7. 如图,D为ABC外一点,DAB=B,CDAD, 1=2,若AC=7,BC=4,求AD的长. 8. 如图,ABC中,AB=AC,BAC=90,点D在线段BC上, EDB= C, BEDE,垂足E ,DE与AB相交于点F。 (1) 若D与C重合时,摸索究线段BE和FD的数量关系,并证明你的结论, (2)若D不与B,C重合时,摸索究线段BE和FD的数量关系,并证明你的结论. 9.如图,已知AD是ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC=BF. 10.已知,如图,RtABC中,AB=BC,在RtADE中,AD=DE,连结EC,取EC中点M,连结DM和BM, 求证:BM=DM且BMDM. 第十三章 轴对称 轴对称、轴对称图形、用坐标表示轴对称 1. 下列图案属于轴对称图形的是( ) 2.在下图所示的几何图形中,对称轴最多的图形的是( ). A B C D 3. 点P(3, 5) 关于 轴的对称点坐标为() A. (3, 5) B. (5, 3) C. (3, 5) D. (3, 5) 4.如图,数轴上 两点表示的数分别为 和 ,点B关于点A的对称点为C,则点C所表示的数为( ) A. B. C. D. 5.如图所示,将一张正方形纸片经过两次对折,并剪出一个小洞后绽开铺平,得到的图形是( ). 6.平面直角坐标系 中, , , . (1) 求出 的面积. (2) 在图5中作出 关于 轴的对称图形 . (3) 写出点 的坐标. 7.如图,在正方形网格纸上有三个点A,B,C,现要在图中网格范围内再找格点D,使得A,B,C,D四点组成的凸四边形 是轴对称图形,在图中标出全部满意条件的点D的位置. 线段的垂直平分线 1. 如图,在ABC中,AB=AC,A=40,AB的垂直平分线MN交AC于点D,则DBC=_. 2. 如图, 在RtABC中, ACB = 90, A = 15, AB的垂直平分线 与 AC交于点D, 与AB交 于点E, 连结BD. 若AD=12cm, 则 BC的长为 cm. 3. 如图, 已知ABC中, BAC = 120, 分别作AC, AB边的垂直平分线PM, PN交于点P, 分 别交BC于点E和点F. 则以下各说法中: P = 60, EAF = 60, 点P到点B和 点C的距离相等, PE = PF, 正确的说法是_. (填序号) 第2题图 第3题图 4. 已知AOB=45, 点P在AOB的内部, P1与P关于OB对称, P2与P关于OA对称, 则P1、P2与O三点构成的三角形是( ) A. 直角三角形 B. 等腰三角形 C. 等边三角形 D. 等腰直角三角形 5. 在ABC中,ABAC,D是BC的中点,且EDBC,A的平分线与ED相交于点E,EFAB于F,EGAC的延长线于点G。 求证:BF=CG。 等腰三角形的性质和判定 1.等腰直角三角形的底边长为5,则它的面积是( ). A.50 B.25 C.12.5 D.6.25 2.如图,等腰ABC中,AB=AC,AD是底边BC上的中线,若B=65,则CAD=_. 3.已知:如图3,ABC中,给出下列四个命题: 若AB=AC,ADBC,则1=2; 若AB=AC,1=2,则BD=DC; 若AB=AC,BD=DC,则ADBC; 若AB=AC,ADBC,BEAC,则1=3; 其中,真命题的个数是( ). A.1个 B.2个 C.3个 D.4个 4. 如图,B=BCD=ACD=36,则图中共有( )等腰三角形. A.0个 B.1个 C.2个 D.3个 5.如图,在ABC中,D是BC边上一点,且AB=AD=DC,BAD=40,则C为( ). A.25 B.35 C.40 D.50 6.已知:如图,AF平分BAC,BCAF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M. (1)求证:AB=CD; (2)若BAC=2MPC,请你推断F与MCD 的数量关系,并说明理由. 7.如图,在ABC中,AB=AC,BAC=30.点D为ABC内一点,且DB=DC,DCB=30.点E为BD延长线上一点,且AE=AB. (1)求ADE的度数; (2)若点M在DE上,且DM=DA, 求证:ME=DC. 8.已知:如图, 中,点 分别在 边上, 是 中点,连 交 于点 , , 比较线段 与 的大小,并证明你的结论. 等边三角形、含30 角直角三角形的性质 1.下列条件中,不能得到等边三角形的是( ). A.有两个内角是60的三角形 B.有两边相等且是轴对称图形的三角形 C.三边都相等的三角形 D.有一个角是60且是轴对称图形的三角形 2.如图,ABC中,AB=AC,BAC=120,DE垂直平分AC. 依据以上条件,可知B=_,BAD=_,BD:DC =_. 3.如图,在纸片ABC中,AC=6,A=30,C=90,将A沿 DE折叠,使点A与点B重合,则折痕DE的长为_. 4.如图,已知ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F. (1)求证: CAD;(2)求BFD的度数. 5.如图所示ABC中,AB=AC,AG平分BAC;FBC =BFG =60, 若FG=3,FB=7,求BC的长. 6. 如图,在等边三角形ABC中,D、E分别为AB、BC上的点, 且BD=CE,AE、CD相交于点F,AGCD,垂足为G. 求证:(1)ACE CBD;(2)AF=2FG. 7.已知:如图,ABC是等边三角形. D、E是ABC外两点,连结BE交AC于M,连结AD交CE于N,AD交BE于F,AD=EB. 当 度数多少时,ECD是等边三角形并证明你的结论. 几何作图与应用 1.尺规作图作 的平分线方法如下:以 为圆心,随意长为半径画弧交 、 于 、 ,再分别以点 、 为圆心,以大于 长为半径画弧,两弧交于点 ,则作射线 即为所求(图4).由作法得 的依据是( ). A.SAS B.ASA C.AAS D.SSS 2.小明同学在学习了全等三角形的相关学问后发觉,只用两把完全相同的长方形直尺就可以作出一个锐角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:射线OP就是BOA的角平分线.你认为小明的想法正确吗请说明理由. 3.如图,已知ABC,求作一点P,使P到A的两边的距离相等,且PA=PB.要求:尺规作图,并保留作图痕迹.(不要求写作法) 4.在一次军事演习中,红方侦察员发觉蓝方指挥部在A区内,到铁路到马路的距离相等,且到两个阵地(M高地和N高地)的距离也相等.假如你是红方的指挥员,请你在作战图(左图)上标出蓝方指挥部的位置,用点P表示. 5.如图,已知线段a,h,求作等腰ABC,使AB=AC,且BC=a,BC边上的高AD=h. 请完成作图并说明你的作图步骤. 6.已知:如图,MON及边ON上一点A.在MON内部求作: 点P,使得PAON,且点P到MON两边的距离相等.(请 用尺规作图,保留作图痕迹,不要求写出作法,不必证明). 7. 已知:如图,AOB的顶点O在直线l上,且AO=AB. (1)画出AOB关于直线l成轴对称的图形COD,且使点A的对称点为点C; (2)在(1)的条件下, AC与BD的位置关系是 ; (3)在(1)、(2)的条件下,联结AD,假如ABD=2ADB, 求AOC的度数. 最短路径问题 1. 如图, P、Q为 边上的两个定点. 在BC边上求作一点M, 使PM+MQ最短 2. 已知: 如图, 牧马营地在M处, 每天牧马人要赶着马群到草地吃草, 再到河边饮水, 最终回到营地M. 请在图上画出最短的放牧路途. 3. 如图, 四边形EFGH是一长方形的台球桌面, 现在黑、白两球分别 位于A、B两点的位置上. 试问怎样撞击黑球A, 才能使黑球A先 遇到球台边EF, 反弹一次后再击中白球B 4. 已知两点M(4, 2) , N(1, 1) , 点P是x轴上一动点, 若使PM+PN最短, 则点P的坐标应为_. 5. 平面直角坐标系xOy中, 已知点A(0, 4) , 一个动点P自OA的中点M动身, 先到达x轴上的某点(设为点E) , 再到达直线x = 6上某点(设为点F) 最终运动到点A, 求使点P运动的路径中最短的点E、F的坐标. 等腰三角形中的分类探讨 1. 等腰三角形的一个角是110, 求其另两角 等腰三角形的一个角是80, 求其另两角 2. 等腰三角形的两边长为5cm、6cm, 求其周长 等腰三角形的两边长为10cm、21cm, 求其周长 3. 等腰三角形一腰上的高与另一腰的夹角为30, 则其顶角为_. 等腰三角形一腰上的高与另一腰的夹角为36度,则该等腰三角形的底角的度数为 . *等腰三角形一边上的高等于底边的一半, 则其顶角为_. *等腰三角形一边上的高等于这边的一半, 则其顶角为_. 4. ABC中, AB = AC, AB的中垂线EF与AC所在直线相交所成 锐角为40, 则B = _. 5. 如图,点A的坐标为(0,1),点B的坐标为(3,1),点C 的坐标为(4,3),假如要使ABD与ABC全等,且C、D不 重合,那么点D的坐标是_. 6. 如图,在正方形方格中,阴影部分是涂黑7个小正方形 所形成的图案,再将方格内空白的一个小正方形涂黑, 使得到的新图案成为一个轴对称图形的涂法有 种. 7. 如图所示, 长方形ABCD中, AB = 4, BC = 4 , 点E是 折线段ADC上的一个动点(点E与点A不重合) , 点P 是点A关于BE的对称点. 在点E运动的过程中, 能使PCB 为等腰三角形的点E的位置共有( ) . A. 2个 B. 3个 C. 4个 D. 5个 8. 平面内有一点D到ABC三个顶点的距离DA=DB=DC,若DAB=30,DAC=40,则BDC的大小是_. 9.如图,已知ABC的三条边长分别为3,4,6,在ABC所在 平面内画一条直线,将ABC分割成两个三角形,使其中的 一个是等腰三角形,则这样的直线最多可画 条. 动手操作 1. 若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分绽开后得到的图形是( ). A B C D 2.如图, 等边ABC的边长为1cm, D、E分别是AB、AC上的点, 将ADE沿直线DE折叠, 点A落在点A处, 且点在ABC外部, 则阴影部分图形的周长为_cm. 3. 如图, 将一张三角形纸片ABC折叠, 使点A落在BC边上, 折痕EFBC, 得到EFG; 再接着将纸片沿BEG的对称轴EM折叠, 依照上述做法, 再将CFG折叠, 最终得到矩形EMNF, 折叠后的EMG和FNG的面积分别为1和2, 则ABC的面积为( ) A. 6 B. 9 C. 12 D. 18 4.(1) 已知 中, , , 请画一条直线, 把这个三角形分割成两个等腰三角形. (请你选用下面给出的备用图, 把全部不同的分割方法都画出来. 只需画图, 不必说明理由, 但要在图中标出相等两角的度数) (2) 已知 中, 是其最小的内角, 过顶点 的一条直线把这个三角形分割成了两个等腰三角形, 请探求 与 之间的全部可能的关系. 5. 当身边没有量角器时, 怎样得到一些特定度数的角呢动手操作有时可以解燃眉之急. 如图, 已知矩形ABCD, 我们按如下步骤操作可以得到一个特定的角: (1) 以点A所在直线为折痕, 折叠纸片, 使点B落在AD上, 折痕与BC交于E; (2) 将纸片展平后, 再一次折叠纸片, 以E所在直线为折痕, 使点A落在BC上, 折痕EF交AD于F. 则AFE = _. 6. 图、图、图都是 的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,在每个网格中标注了5个格点.按下列要求画图: (1)在图中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有3个; (2)在图中以格点为顶点画一个等腰直角三角形,使其内部已标注的格点只有3个;(与图不同) (3)在图中以格点为顶点画一个等腰三角形,使其内部已标注的格点只有4个. 几何综合题 1.在ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE=BAC,连接CE. (1)如图1,当点D在线段CB上,且BAC=90时,那么DCE= 度; (2)设BAC= ,DCE= . 如图2,当点D在线段CB上,BAC90时,请你探究 与 之间的数量 关系,并证明你的结论; 如图3,当点D在线段CB的延长线上,BAC90时,请将图3补充完整, 并干脆写出此时 与 之间的数量关系(不需证明). 2. 在ABC中,AB=AC,BAC= ( ),将线段BC绕点B逆时针旋转 60得到线段BD(BC=BD,DBC=60)。 (1)如图1,干脆写出ABD的大小(用含 的式子表示); (2)如图2,BCE=150,ABE=60,推断ABE的形态并加以证明; (3)在(2)的条件下,连结DE,若DEC=45,求 的值。 3. 在RtABC中, ACB = 90, A = 30, BD是ABC的角平分线, DEAB于点E. (1) 如图1, 连接EC, 求证: EBC是等边三角形; (2) 点M是线段CD上的一点(不与点C, D重合) , 以BM为一边, 在BM的下方作BMG = 60, MG交DE延长线于点G. 请你在图2中画出完整图形, 并干脆写出MD, DG与AD之间的数量关系; (3) 如图3,点N是线段AD上的一点, 以BN为一边, 在BN的下方作BNG = 60, NG交DE延长线于点G. 摸索究ND, DG与AD数量之间的关系, 并说明理由. 4. 如图 中, 厘米, 厘米, 点 为 中点. (1) 假如点P在线段BC上以3厘米/秒的速度由B点向C点运动, 同时, 点Q在线段CA上由C点向A点运动. 若点Q的运动速度与点P的运动速度相等, 经过1秒后, 与 是否全等, 请说明理由; 若点Q的运动速度与点P的运动速度不相等, 当点Q的运动速度为 多少时, 能够使 与 全等 (2) 若点Q以中的运动速度从点C动身, 点P以原来的运动速度从点B同时动身, 都逆时针沿 三边运动, 求经过多长时间点P与点Q第一次在 的哪条边上相遇 5.已知:如图,ABC中,A=90,AB=AC.D是斜边BC的中点;E、F分别在线段AB、AC上,且EDF=90. (1) 求证:DEF为等腰直角三角形. (2) 求证:BE+CFEF (3) 假如E点运动到AB的反向延长线上,F在直线CA上且仍保持EDF=90,那么DEF还仍旧是等腰直角三角形吗请画图(右图)并干脆写出你的结论. 6. 如图1,若ABC和ADE为等边三角形,M,N分别EB,CD的中点, (1)求证: CD=BE,AMN是等边三角形. (2)当把ADE绕A点旋转到图2的位置时,(1)中结论是否仍旧成立若成立请证明,若不成立请说明理由; 7.如图,四边形ABCD中,ADBC,CD=DB=2,BDCD.过点C作CEAB于E,交对角线BD于F,连结AF, 求证:CF=AB+AF. 8.已知:如图,在ABC中,AB=AC,BAC= ,且60 120. P为ABC内部一点,且PC=AC, PCA=120 . (1)用含 的代数式表示APC, 得APC =_; (2)求证:BAP=PCB; (3)求PBC的度数. 9. 在 中, , 是 的中点, 是线段 上的动点,将线段 绕点 顺时针旋转 得到线段 . (1) 若 且点 与点 重合(如图1),线段 的延长线交射线 于点 ,请补全图形,并写出 的度数; (2) 在图2中,点 不与点 重合,线段 的延长线与射线 交于点 ,猜想 的大小(用含 的代数式表示),并加以证明. 第十四章 因式分解 因式分解的定义 将一个多项式化为几个整式的积的形式 下列从左到右的变形,属因式分解的有( ). (A) (B) (C) (D) 因式分解的方法 提公因式法 公式法 (平方差、完全平方) 十字相乘法 整体的思想(换元、分组分解) 其他方法: 拆添项配方法、待定系数法、综合除法因式定理、特别的多项式的分解(轮换对称、双十字相乘等). 1.初二各科期末考试有效的复习方法2.提高初二数学学习方法与建议3.初二数学期末考试试卷分析4.初二数学上册学问点总结5.初二数学想拿高分的关键是什么 第21页 共21页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页第 21 页 共 21 页

    注意事项

    本文(2022年初二数学上学期期末复习建议.docx)为本站会员(l****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开