2022五年级数学思维训练.docx
2022五年级数学思维训练篇一:五年级数学思维训练101题及答案 五年级数学思维训练101题及答案 (一) 1. 765×213÷27765×327÷27 解:原式=765÷27×(213+327)= 765÷27×540=765×20=15300 2. (999999979001)-(13999) 解:原式=(9999-999)+(9997-997)+(9995-995)+(9001-1) =9000+9000+.+9000 (500个9000) =4500000 319981999×19991998-19981998×19991999 解:(19981998+1)×19991998-19981998×19991999 =19981998×19991998-19981998×19991999+19991998 =19991998-19981998 =10100 4(873×477-198)÷(476×874199) 解:873×477-198=476×874199 因此原式=1 52000×1999-1999×19981998×1997-1997×19962×1 解:原式1999×(20001998)1997×(19981996) 3×(42)2×1 (1999199731)×22000000。 6297293289209 解:(209+297)*23/2=5819 7计算: 解:原式=(3/2)*(4/3)*(5/4)*(101/99)*(1/2)*(2/3)*(3/4)*(98/99)=50*(1/99)=50/99 8. 解:原式=(1*2*3)/(2*3*4)=1/4 9. 有7个数,它们的平均数是18。去掉一个数后,剩下6个数的平均数是19;再去掉一个数后,剩下的5个数的平均数是20。求去掉的两个数的乘积。 解: 7*18-6*19=126-114=12 6*19-5*20=114-101=14 去掉的两个数是12和14它们的乘积是12*14=168 10. 有七个排成一列的数,它们的平均数是 30,前三个数的平均数是28,后五个数的平均数是33。求第三个数。 解:28×333×5-30×7=39。 11. 有两组数,第一组9个数的和是63,第二组的平均数是11,两个组中所有数的平均数是8。问:第二组有多少个数? 解:设第二组有x个数,则6311x=8×(9+x),解得x=3。 12小明参加了六次测验,第三、第四次的平均分比前两次的平均分多2分,比后两次的平均分少2分。如果后三次平均分比前三次平均分多3分,那么第四次比第三次多得几分? 解:第三、四次的成绩和比前两次的成绩和多4分,比后两次的成绩和少4分,推知后两次的成绩和比前两次的成绩和多8分。因为后三次的成绩和比前三次的成绩和多9分,所以第四次比第三次多98=1(分)。 13. 妈妈每4天要去一次副食商店,每 5天要去一次百货商店。妈妈平均每星期去这两个商店几次?(用小数表示) 解:每20天去9次,9÷20×7=3.15(次)。 14. 乙、丙两数的平均数与甲数之比是137,求甲、乙、丙三数的平均数与甲数之比。 解:以甲数为7份,则乙、丙两数共13×226(份) 所以甲乙丙的平均数是(26+7)/3=11(份) 因此甲乙丙三数的平均数与甲数之比是11:7。 15. 五年级同学参加校办工厂糊纸盒劳动,平均每人糊了76个。已知每人至少糊了70个,并且其中有一个同学糊了88个,如果不把这个同学计算在内,那么平均每人糊74个。糊得最快的同学最多糊了多少个? 解:当把糊了88个纸盒的同学计算在内时,因为他比其余同学的平均数多88-7414(个),而使大家的平均数增加了7674=2(个),说明总人数是14÷27(人)。因此糊得最快的同学最多糊了 74×6-70×594(个)。 16. 甲、乙两班进行越野行军比赛,甲班以4.5千米时的速度走了路程的一半,又以5.5千米时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米时的速度行进,另一半时间以5.5千米时的速度行进。问:甲、乙两班谁将获胜? 解:快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。 17. 轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天? 解:轮船顺流用3天,逆流用4天,说明轮船在静水中行431(天),等于水流347(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流33×724(天)的路程,即木筏从A城漂到B城需24天。 18. 小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米? 解:因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由 (70×4)÷(9070)14(分) 可知,小强第二次走了14分,推知第一次走了18分,两人的家相距 (5270)×182196(米)。 19. 小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米时,则3时相遇。甲、乙两地相距多少千米? 解:每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×424(千米) 20. 甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米秒,乙比原来速度减少2米秒,结果都用24秒同时回到原地。求甲原来的速度。 解:因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。 设甲原来每秒跑x米,则相遇后每秒跑(x2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x24(x2)400,解得x=7又1/3米。 21. 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻? 解:924。解:甲车到达C站时,乙车还需16-511(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(11.5)4.4(时)4时24分,所以相遇时刻是924。 22. 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒? 解:快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11 23. 甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米? 解:甲乙速度差为10/5=2 速度比为(4+2):4=6:4 所以甲每秒跑6米,乙每秒跑4米。 24甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。问: (1) A, B相距多少米? (2)如果丙从A跑到B用24秒,那么甲的速度是多少? 解:解:(1)乙跑最后20米时,丙跑了40-2416(米),丙的速度 25. 在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明。已知公共汽车从始发站每次间隔同样的时间发一辆车,问:相邻两车间隔几分? 解:设车速为a,小光的速度为b,则小明骑车的速度为3b。根据追及问题“追及时间×速度差追及距离”,可列方程 10(ab)20(a3b), 解得a5b,即车速是小光速度的5倍。小光走10分相当于车行2分,由每隔10分有一辆车超过小光知,每隔8分发一辆车。 26. 一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔? 解:狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑27×(80÷5)80÷8×3192(步)。 27. 甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问: (1)火车速度是甲的速度的几倍? (2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇? 解:(1)设火车速度为a米秒,行人速度为b米秒,则由火车的 是行人速度的11倍; (2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485135)÷2675(秒)。 28. 辆车从甲地开往乙地,如果把车速提高20,那么可以比原定时间提前1时到达;如果以原速行驶101千米后再将车速提高30,那么也比原定时间提前1时到达。求甲、乙两地的距离。 29. 完成一件工作,需要甲干5天、乙干 6天,或者甲干 7天、乙干2天。问:甲、乙单独干这件工作各需多少天? 解:甲需要(7*3-5)/2=8(天) 乙需要(6*7-2*5)/2=16(天) 30一水池装有一个放水管和一个排水管,单开放水管5时可将空池灌满,单开排水管7时可将满池水排完。如果放水管开了2时后再打开排水管,那么再过多长时间池内将积有半池水? 31小松读一本书,已读与未读的页数之比是34,后来又读了33页,已读与未读的页数之比变为53。这本书共有多少页? 解:开始读了3/7 后来总共读了5/8 33/(5/8-3/7)=33/(11/56)=56*3=168页 32一件工作甲做6时、乙做12时可完成,甲做8时、乙做6时也可以完成。如果甲做3时后由乙接着做,那么还需多少时间才能完成? 解:甲做2小时的等于乙做6小时的,所以乙单独做需要 6*3+12=30(小时) 甲单独做需要10小时 因此乙还需要(1-3/10)/(1/30)=21天才可以完成。 33. 有一批待加工的零件,甲单独做需4天,乙单独做需5天,如果两人合作,那么完成任务时甲比乙多做了20个零件。这批零件共有多少个? 解:甲和乙的工作时间比为4:5,所以工作效率比是5:4 工作量的比也5:4,把甲做的看作5份,乙做的看作4份 那么甲比乙多1份,就是20个。因此9份就是180个 所以这批零件共180个 34.挖一条水渠,甲、乙两队合挖要6天完成。甲队先挖3天,乙队接着 解:根据条件,甲挖6天乙挖2天可挖这条水渠的3/5 所以乙挖4天能挖2/5 因此乙1天能挖1/10,即乙单独挖需要10天。 甲单独挖需要1/(1/6-1/10)=15天。35. 修一段公路,甲队独做要用40天,乙队独做要用24天。现在两队同时从两端开工,结果在距中点750米处相遇。这段公路长多少米? 36. 有一批工人完成某项工程,如果能增加 8个人,则 10天就能完成;如果能增加3个人,就要20天才能完成。现在只能增加2个人,那么完成这项工程需要多少天? 解:将1人1天完成的工作量称为1份。调来3人与调来8人相比,10天少完成(8-3)×10=50(份)。这50份还需调来3人干10天,所以原来有工人50÷1032(人),全部工程有(2+8)×10=101(份)。调来2人需101÷(2+2)=25(天)。 37. 解:三角形AOB和三角形DOC的面积和为长方形的50% 所以三角形AOB占32% 16÷32%=50 38. 解:1/2*1/3=1/6 所以三角形ABC的面积是三角形AED面积的6倍。 篇二:人教版小学五年级上数学思维训练题 五上思维训练题(一) 班级: 姓名: 一、用简便方法计算下面各题 7.69×101 0.125×72 11×40+8×11+39×48 9.8 +99×9.8 46×0.33+54×0.331.25×88 4.65×32+2.5×46.5+0.465×4300.9999×1.3-0.1111×2.7 二、已知:2.5×?×2.5×0.4×?×,求:a×b 三、已知:?,?, 个0 求:ab , a×b 四、五年级一班48个同学集体合影。定价是24.5元,给4张相片。另外加印 是每张2.3元。全班每人一张,再送给班主任和科任教师5张,一共要付多少 元? 五、甲、乙两数的差及商都等于6,那么甲、乙两数的和等于多少? 六、一只渔船顺水每小时航行6千米,逆水每小时航行4千米,这只船在静水中的速度和水流速度各是多少? 七、甲、乙、丙三个人去钓鱼,已知甲比乙多钓6条,丙钓的鱼是甲的2倍,比乙多钓22条,他们一共钓了多少鱼? 八、从一块正方形土地中,划出一块宽为1米的长方形土地 (如图),剩下的长方形土地面积是15.75平方米,求划出的长方形土地的面积。 九、五个裁判给一名体操运动员评分。去掉一个最高分和一个最低分,平均得 9.58分;如果只去掉一个最高分,平均得9.46分;如果只去掉一个最低分,平均得9.66分。求最高分和最低分。 十、王老师买了同样的4枝钢笔和9枝圆珠笔共付出24元,已知买2枝钢笔的钱可买3枝圆珠笔,两种笔各多少元一枝? 五上思维训练题(二) 班级: 姓名: 一、用简便方法计算下面各题 1998×199919991999×19981998 1999×0.7219.99×28 3.3×6.3×0.6÷(0.21×1.1×0.2) 99999×711111×37 (1.25×72812.5×27.20.125×7500 ) ×88.88×1.25×90.1 二、已知甲乙两数之和是2002,且甲数除以乙数商4余2,则甲乙两数的差是多少? 三、有一列数:19、22、25、28?请问这列数前99个数(从19开始起)的总和是多少? 四、当A为何值时,下面等式成立: 2.6×1.5+A×1.5+0.15×34=76×0.15 五、有两列火车,一列长130米,每秒行23米,另一列车长250米,每秒行15米,现在两车相向而行,问从相遇到离开需要几秒钟? 六、6只鸡和8只小羊共重78千克,已知5只鸡的重量等于2只小羊的重量。求每只鸡和每只小羊的重量。 七、二小买来故事书、科技书、文艺书共456本。其中科技书是故事书的1.2倍,文艺书比科技书多31本。三种书各买了多少本? 八、如图,大正方形面积比小正方形面积多24平方米,求小正方形的面积是多少? 2米 九、5包科技书和7包故事书共620本;买同样的6包科技书和3包故事书共420本。每包科技书多还是每包故事书多?多多少本? 十、有自然数A、B、C,A和B的和是86,B加C的和是120,A加C的和是110。那么A、B、C各是多少? 十一、A,B两城相距240千米,一辆汽车原计划用6小时从A城开往B城,汽车行驶了一半路程,因故在途中停留了30分钟,如果按原定时间到达B城,汽车在后半段路程每小时应加快多少千米? 五上思维训练题(三) 班级: 姓名: 一、用简便方法计算下面各题 2022+200.5+20.05+2.005 1400÷25÷8 + 350÷4÷125 (0.75×42.7+57.3-0.573×25)÷3×7972 33333×66666+99999×77778 二、甲乙两数的和是128.7,如果甲数的小数点向右移动一位就等于乙数,甲乙两数各是多少? 三、小丽在计算3.6除以一个数时,由于把商的小数点向右多点了一位,结果得24.这道题的除数是多少? 四、一个两层书架,上层放的书是下层的2.5倍,如果从上层取60本放入下层,则两层书本数相等。上层原来放书多少本? 五、小红用27.2元正好可以买5千克苹果和4千克桔子,结果她把买的数量给颠倒了,就剩下0.4元,那么桔子每千克多少元? 六、国庆节,爸爸妈妈带兰兰去公园玩,买门票共用去10.5元。已知一张大人票价与3个小孩的票价相等,问一张大人票多少元? 篇三:五年级数学思维训练教学计划总结 小学五年级数学思维训练教学计划 执教者:余云妹 一、指导思想: 数学是一个色彩缤纷的万花筒,美丽而奇妙。数学是神奇的世界,肯定有不少学生产生了浓厚的兴趣。为此,训练学生的思维活动是重中之重。在数学教学中探求问题的思考、推理、论证的过程等一系列数学活动都是数学教学中实施思维训练的理论依据之一。因此,趣味数学能更好的促进学生数学思维能力的发展。这学期通过趣味数学校本课程的学习,提高同学们的学习兴趣,训练学生的数学思维、培养学生良好的学习习惯,让学生通过学习深入地理解数学知识,提高学生的思维能力和分析能力。 二、学情分析: 五年级学生已具备良好的分析问题、解决问题的能力。从课本到奥数为孩子们提供了一系列数学故事、益智问题和数学游戏。这些问题和活动为学生提供探索数学奥秘的机会,学生在参与这些数学游戏和解决数学问题的过程中,体会数学价值,锻炼数学智慧,运用所学的知识与技能,学习解决问题的方法。 三、目的要求: 1、培养学生学习数学的兴趣和爱好,让学生在探索解法的过程中亲身体验到了数学思想的博大精深和数学方法的创造力,从而激发学生学习数学的兴趣,产生了进一步学习数学的向往感。使学生在学习过程中获得成功的体验,建立自信心。 2、使学生掌握一定的学习方法、学习技能。 3、使学生获得一些初步的数学实践活动经验,能运用所学知识和方法解决简单问题 , 感受数学在生活中的作用。 4、培养学生与人合作、与人交流的意识和能力。让学生对数学产生浓厚的兴趣,愿意主动去发现生活中的数学现象,在日常学习生活中敢于质疑,乐于讨论探究生活中各种现象,喜欢和他人合作解决问题。培养学生科学的学习态度和方法,树立攀登科学高峰的志趣和理想。 5、培养学生积极参与数学学习活动、敢于质疑、独立思考、不怕困难等良好的学习习惯。体验数学学习的快乐,知道有付出才会有回报,并培养吃苦耐劳的精神。 6、培养学生数学思考能力、观察能力、动手操作能力创新能力。引导学生掌握学习数学的思想方法,培养分析、推理、判断能力,拓宽和加深所学的知识,充分地拓展学生的数学才能,激发创新思维,发展学生的创造力,让学生在数学素养上有较大的发展与提高,为学生进一步学好数学打下坚实的基础。 四、活动措施: 1.选好人才 先初步设定数学思维训练兴趣小组人数,各班主任利用班会做好宣传发动工作,让学生自由报名,再根据各班的报名人数从中选出具有一定爱好数学的学生作为学员。 2.培养学生的学习兴趣。 学习兴趣是学生基于自己的学习需要而表现出来的一种认识倾向,它是学好一门课的内驱动力。学好数学,掌握数学的思维方式,是现代社会要求公民必须具备的基本素质之一。活动中,通过一些大家喜闻乐见的题目,逐步培养大家的“数感”,引导大家喜爱数学,以至于达到自觉学习数学的目的,实现从“要我学”到“我要学”的转变。 3.注重思维能力培养 数学学科是一门逻辑性极强的学科。这就要求我们教师在上课过程中采用“任务驱动”教学法,明确每节课的教学目标,设下问题,让学生自己去思考问题、探索解决问题的办法,给学生“主动发展”的空间,大力推行“发现式”教学,同时要保证学生充裕的思考时间,着 重培养和锻炼学生的思维能力。 4.发挥“小老师”的作用。 学生当“小老师”改变了传统的师生间单向传递知识的方式,使学生由知识的被动接受者转变为知识的传授者,发挥了学生的主体作用。 小学五年级数学思维训练教学总结 执教者:余云妹 数学教学过程的基本目标是促进学生的发展,按照新课标的基本理念,它不只是让学生获得必要的数学 知识,技能还应当包括在启迪思维、解决问题,情感与态度等方面的发展,那么思维训练过程式一个什么样的过程呢? 思维训练是训练人脑对客观事物的本质特征和内在联系尽快正确作出间接的和概括的反映的过程,小学数学思维训练是在小学数学教学过程中教师有目的、有计划地引导学生主动参与思维活动,培养学生思维兴趣、品质和能力的过程;这一过程一般包括训练准备、训练实施、效果测评三个过程。 1、训练准备过程 教师要想上好思维训练课,开展好思维训练必须做好充分准备,这样,才能确保训练目的明确,方法得当,有序高效在这一过程有两项主要任务: 第一:拟定好思维计划,这时搞好思维训练的前提,在定计划要依据“大纲”或“课标”要求紧扣教材知识和内容、训练目的和要求、训练形式和方法。 第二:激发学生的思维兴趣,引起学生主动思考、敢想敢说。如果学生不愿意思考问题,不敢发表意见,则思维训练难于进行,怎样激发学生的思维兴趣呢?一是建立教师与学生、学生与学生之间的伙伴关系;二是说出有思考价值的问题;三是让学生从新旧知识矛盾中发现问题;四是创设争辩氛围;五是利用游戏、演示、操作等激发思维兴趣。 2、训练实施过程: 在这一过程,首先是训练指导,即结合某单元或章节的新知识内容,说明重点训练项目、程序和方法、使学生明确训练目的和要求,从而自觉参与思维训练。其次是按计划分课时开展训练,注意排除学生的思维障碍。在新课学习阶段以归纳推理训练为主,在练习巩固阶段以演绎推理训练为主;但是,要注意求异思维训练。 数学课堂教学是思维训练的主阵地,如何搞好课堂教学中的思维训练呢? (1)创设思维情景激发思维。 对学生进行思维训练,首先要创设一定的思维情景,激发学生思维动机,将学生的思维需要转化为思维活动 (2)安排适当活动,激活思维。 在学生的思维被激发后,他们会主动参与思维活动,在次基础上,还应安排适当活动激活思维,使思维优质高效。 让学生质疑、问难。鼓励学生大胆质疑、敢于提问,是激活思维的有效方法之一,质疑问难的学习活动可以活跃气氛,促使全体学生围绕一定的问题展开思维、交流信息、教师正好因势利导参与研讨。 让学生自学尝试。自学尝试是一种自主探究新知的过程,不仅可以激活思维,而且可以培养自学能力。 让学生探究研讨。例如:教学运算定律让学生通过题组计算自己找规律,做结论。 让学生判断推理。应用判断推理辩析和强化概念的本质属性,也是激活思维的有效方法。例如:让学生运用除法算式判断哪个数能被哪个数整除,并说明理由,可以激活学生的演绎推理。 (3)多种形式鼓励激励思维。 小学生的思维积极性需要不断被激励,如何激励学生思维呢? 、报告结果,自我激励。即让学生当众报告自己的思维过程和结果,如让学生说一说是怎样想的把自己得的结论说给大家听。 、留下悬念,设问激励。如在数学课结尾时留下学生想解决但未解决的问题,让学生带着 问题去探究。 、因人评价,分层激励。学生的思维水平是有差异的,评价是一定要因人而异,借助各自思维的“闪光点”进行激励,不使任何一个学生的思维火花因评价不当而熄灭。 、效果评价过程。 在思维训练进行一段时间后,要对训练效果进行测评,以此检验训练效果如何,方法是否科学,以便适时修订计划,优化训练过程,促进训练深入进行。 测评的内容大致包括计划执行情况,学生思维心理变化(主要包括思维积极程度,坚持程度和独立程度等方面的变化)思维品质变化(主要包括思维的广阔性、灵活性、深刻性、批判性、敏捷性、独创性等方面的变化)思维能力变化(主要包括分析、综合、抽象、概括、判断、推理等能力变化)四个方面。 测评方法一般有出题考试、调查问卷、平时观察等,测评前,要确定方法和步骤 ,准备好测评工具,测评中,要选择同龄的适当多人数的两组为对象,其中一组未进行训练,这样便于分析比较,测评后,要表彰和奖励训练成效好的师生。 总之,小学数学思维训练是一个由训练准备到训练实施,再通过训练测评,又回到新一轮训练的循环往复过程,每经过一个循环,教师组织训练的能力和学生的思维能力都将得到一定的培养和发展,从而全面提高学生的素质。 五年级数学思维训练出自:百味书屋链接地址: 转载请保留,谢谢!本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第24页 共24页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页第 24 页 共 24 页