七年级二元一次方程组复习讲义(共6页).docx
精选优质文档-倾情为你奉上二元一次方程归类讲解及练习知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。4、二元一次方程组的解:二元一次方程组中各个方程的公共解。(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成 的形式。5、二元一次方程组的解法:基本思路是消元。(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。主要步骤:变形用一个未知数的代数式表示另一个未知数。代入消去一个元。求解分别求出两个未知数的值。写解写出方程组的解。(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。变形同一个未知数的系数相同或互为相反数。加减消去一个元。求解分别求出两个未知数的值。写解写出方程组的解。(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即: 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。 找:找出能够表示题意两个相等关系。 列:根据这两个相等关系列出必需的代数式,从而列出方程组。 解:解这个方程组,求出两个未知数的值。 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。6、二元一次方程组的解的情况有以下三种: 当时,方程组有无数多解。(两个方程等效) 当时,方程组无解。(两个方程是矛盾的) 当(即)时,方程组有唯一的解7、方程的个数少于未知数的个数时,一般是不定解,即有无数多解,若要求整数解,可按二元一次方程整数解的求法进行。8、求方程组中的待定系数的取值,一般是求出方程组的解(把待定系数当己知数),再解含待定系数的不等式或加以讨论。练习题:1、已知代数式是同类项,那么a= ,b= 。2、已知是同类项,那么=_。3、解下列方程组: 4、已知则= 。5、关于x的方程组的解是,则 |m-n| 的值是 。6、已知是二元一次方程组的解,则的算术平方根为 。7、已知方程组的解x,y满足方程5x-y=3,求k的值是 。8、选择一组值使方程组(1)有无数多解(2)无解(3)有唯一的解。9、a取什么值时,方程组 的解是正数?10、a取哪些正整数值,方程组的解x和y都是正整数?11、 要使方程组的解都是整数, k应取哪些整数值?12、关于的方程组有整数解,即都是整数,是正整数,求的值。13、m取何整数值时,方程组的解x和y都是整数?14、若求代数式的值。补充(中考题)1.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元)1234人数67表格中捐款2元和3元的人数不小心被墨水污染已经看不清楚.若设捐款2元的有名同学,捐款3元的有名同学,根据题意,可得方程组( ).(A)(B)(C)(D)2.已知二元一次方程组为,则_,_.3.若方程组的解与相等,则_.4.若是二元一次方程,则值等于_.5.有一个两位数,减去它各位数字之和的3倍,值为23,除以它各位数字之和,商是5,余数是1,则这样的两位数()A不存在B有惟一解 C有两个D有无数解6.4x+1=m(x2)+n(x5),则m、n的值是( )A. B. C. D.7.如果方程组无解,则a为( )A.6 B.6 C.9 D.98.以方程组的解为坐标的点在平面直角坐标系中的位置是( )A第一象限 B第二象限 C第三象限 D第四象限9.若关于的方程组的解是,则为( )A1B3C5D210、若方程组的解之和:x+y=5,求k的值,并解此方程组.专心-专注-专业