二次函数重要知识点归纳(共3页).doc
精选优质文档-倾情为你奉上二次函数知识点归纳1.表达式:一般式:(); 顶点式:()交点式:y=a(xx1)(xx2) (a0)2.顶点坐标:(,) (,)3.顶点意义:当时,有最小值为;,有最大值为 当时,有最小值为;,有最大值为4.a的意义:,图象开口向上;,图象开口向下;两函数图象大小形状相同.(即相等的抛物线为全等型抛物线)5.对称轴:;(其中x1、x2为抛物线上对称点的横坐标)6.对称轴位置分析:,对称轴为轴; ,即a、b异号,对称轴在轴的右侧; ,即a、b同号,对称轴在轴的左侧;(左同右异)7.增减性:,(或xh)时,随的增大而增大;(或xh)时,随的增大而减小;,(或xh)时,随的增大而减小;(或xh)时,随的增大而增大8. 抛物线与轴的交点为(0,),c值为抛物线在y轴上的截距.9.抛物线与轴的交点:时,抛物线与x轴有一个交点;时,抛物线与x轴有两个交点;时,抛物线与x轴没有交点.10.图象的平移:化成顶点式,上加下减:;左加右减:11设抛物线与x轴交于A、B两点,则或12抛物线上重要的点:抛物线与x轴、y轴的交点坐标,以及顶点坐标解题中经常会用到,所以同学们应能熟练地由解析式求这些点的坐标.13二次函数与一元二次方程根的分布:若抛物线与x轴的两个交点在正半轴上,则;若抛物线与x轴的两个交点在负半轴上,则;若抛物线与x轴的两个交点分别在正、负两半轴上,则若抛物线与x轴的两个交点只有一个点在m<x<n范围内,则f(m)·f(n)<014抛物线的变换:关于x轴对称: 代入(x,y)关于y轴对称: 代入(x,y)关于原点对称: 代入(x,y)关于顶点对称:关于(h,k)对称15抛物线与直线y=mx+n的位置关系:两式消掉y,得,0相交,两解析式组成的方程组的解即为图象交点坐标;0相离;=0相切.16二次函数与二次不等式:若抛物线与x轴交于(x1,0)、(x2,0),a0时,解集为xx1或xx2;时,解集为x1xx2;a0时,解集为x1xx2;时,解集为xx1或xx2xyOx1x217二次函数与一次函数值的比较:如图:xx1或xx2时,二次函数值大于一次函数值;x1xx2时, 二次函数小于一次函数值.专心-专注-专业