欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数学必修二概念知识点大全(共26页).doc

    • 资源ID:12098587       资源大小:38KB        全文页数:26页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数学必修二概念知识点大全(共26页).doc

    精选优质文档-倾情为你奉上数学必修二知识整理1. 空间几何的结构棱柱的结构特征棱柱的定义:一般地,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱柱中,两个互相平行的面叫做棱柱的底面,简称底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点(如下图)。详解:“有两个面互相平行,其余各面都是平行四边形的几何体”不一定是棱柱。底面是三角形、四边形、五边形的棱柱分别叫做三棱柱、四棱柱、五棱柱我们用表示底面各顶点的字母表示棱柱。如上图的棱柱表示为棱柱棱柱的特点:两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形。棱柱的一些相关概念:棱柱两底面之间的距离,叫做棱柱的高。侧棱与底面不垂直的棱柱叫做斜棱柱。侧棱与底面垂直的棱柱叫做直棱柱。底面是正多边形的直棱柱叫做正棱柱。棱柱的本质特征棱柱的两个本质特征:有两个平面互相平行的面;侧棱互相平行。由这两个特征可以推出棱柱的所有侧面都是平行四边形,侧棱平行且相等,所有对角面都是平行四边形。详解:直棱柱是特殊的棱柱,“直”体现在侧棱与地面垂直;正棱柱是特殊的直棱柱,“正”体现在底面是正多边形。棱锥的结构特征棱锥的定义:一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。这个多边形叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。顶点到底面的距离叫做棱锥的高(如下图)。底面是三角形、四边形、五边形的棱锥分别叫做三棱锥、四棱锥、五棱锥其中三棱锥又叫四面体。棱锥也用表示顶点和底面各顶点的字母表示。如上图中的四棱锥,表示为棱锥S-ABCD.棱锥的特点:底面是多边形,侧面是有一个公共顶点的三角形。如果棱锥的底面是正多边形,它的顶点又在过底面中心的垂线上,则这个棱锥叫做正棱锥。正棱锥各侧面都是全等的等腰三角形,这些等腰三角形边上的高都相等,叫做棱锥的斜高。详解:特殊的棱锥正棱锥,即地面是正多边形,并且顶点在底面上的投影是底面的中心,这样的棱锥叫做正棱锥。两个条件缺一不可。棱台的定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。原棱锥的底面和截面分别叫做棱台的下底面和上底面;其他各面叫做棱台的侧面;相邻两侧面的公共边叫做棱台的侧棱;两底面间的距离叫做棱台的高(如下图)。由三棱锥、四棱锥、五棱锥截得的棱台分别叫做三棱台、四棱台、五棱台与棱柱的表示一样,上图中的棱台表示为棱台由正棱锥截得的棱台叫做正棱台,正棱台各侧面都是全等的等腰梯形,这些等腰梯形的高叫做棱台的斜高。详解:棱台的结构特征是:各侧棱延长后相交于同一点;两底面是平行的相似多边形圆柱的结构特征圆柱的定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。旋转轴叫做圆柱的轴;在轴上的这条边(或它的长度)叫做这个圆柱的高;垂直于轴的边旋转而成的圆面叫做侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱的母线(如下图)。圆柱用表示它的轴的字母表示,如上图中的圆柱表示为圆柱.棱柱与圆柱统称为柱体。详解:圆柱有两个大小相同的底面,有无数条母线,而且圆柱的所有母线都平行且相等。圆柱有两个本质特征:平行于底面的截面是圆;过轴的截面是全等的矩形。圆锥的结构特征圆锥的定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。圆锥也有轴、底面、高、侧面和母线(如下图)。圆锥也用表示它的轴的字母表示,如上图中的圆锥表示为圆锥SO.棱锥与圆锥统称为锥体。详解:圆锥的简单性质:平行于底面的截面都是圆;过轴的截面是全等的等腰三角形。圆锥的轴截面包含了圆锥的各个元素,是解决圆锥问题常用的平面图形,它可以把空间问题转化为平面问题,这是解决空间几何问题的常用方法。圆台的结构特征圆台定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。与圆柱、圆锥一样,圆台也有轴、高、底面、侧面、母线(如下图)。圆台也用表示它的轴的字母表示,如上图中的圆台表示为圆台.棱台与圆台统称为台体。详解:圆台可以看作是由圆锥截得的,也可以看作是直角梯形绕其直角边旋转而成的。圆台的结构特征:平行于底面的截面都是圆;过轴的截面是全等的等腰梯形;圆台的母线长都相等,每条母线延长后,都与轴相交同一点。球的结构特征? 球的定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称球。半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直线叫做球的直径(如下图)。球常用表示球心的字母O表示,如上图中的球表示为球O.球面距离:球面上两点之间的最短距离,就是经过两点的大圆在这两点间的一段劣弧的长度。我们把这个弧长叫做两点的球面距离。详解:球体与球面是不同的,球体是几何体,球面是曲面,但两者也有联系,球面是球体的表面。简单组合体的结构特征简单组合体的构成有两种基本形式:一种是由几何体拼接而成,一种是有简单几何体截去或挖去一部分而成。详解:简单组合体的分类:多面体与多面体的组合:由两个或两个以上的多面体组成的几何体。多面体与旋转体的组合:由一个多面体与一个旋转体组合而成。旋转体与旋转体的组合体:由两个或两个以上的旋转体组合而成。2、空间几何体的表面积与体积空间几何体的表面积与体积1.柱体、锥体、台体的表面积对于棱柱、棱锥、棱台等多面体,它们的表面积是其各个面的面积之和.因此,可以把它们展开成平面图形,利用平面图形求面积的方法,求立体图形的表面积圆柱的侧面展开图是一个矩形(如下图),如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为,侧面积为,此时圆柱的表面积.(3)圆锥的侧面展开图是一个扇形(如下页图),如果圆锥的底面半径为r,母线为l,那么它的表面积.(4)圆台的侧面展开图是一个扇环(如下图),它的表面积等于上、下两个底面的面积和加上侧面的面积,即.2.柱体、锥体、台体的体积(S为底面积,h为柱体的高);(S为底面积,h为锥体的高);(、S分别为上、下底面面积,h为台体的高)。球的体积和表面积设球的半径为R,那么它的表面积,球的体积.详解:利用球的半径、球心到截面的距离、截面圆的半径所构成的直角三角形求出截面圆的半径,即.3、空间点、直线、平面之间的位置关系平面的概念及其表示法为了表示平面,我们常把希腊字母等写在代表平面的平行四边形的一个角上,如平面、平面;也可以用代表平面的平行四边形的四个顶点,或者相对的两个顶点的大写英文字母作为这个平面的简称,图(1)的平面也可以表示为平面、平面AC平面BD.平面内有无数个点,平面可以看成点的集合。点A在平面内,记作外,点在平面外,记作.详解:通常把希腊字母等写在代表平面的平行四边形的一个角上,如平面、平面来表示平面。平面的基本性质公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。公理2:经过不在一条直线上的三点,有且只有一个平面。推论1:经过一条直线和这条直线外的一点,有且只有一个平面。推论2:经过两条相交直线,有且只有一个平面。推论3:经过两条平行直线,有且只有一个平面。公理3:如果两个不重合的平面有一个公共点,那么它们且只有一条过该点的公共直线。详解:公理1可以用来判断直线是否在平面内。如果直线l上的所有点都在平面内,就说直线l在平面内,或者说平面经过直线l,记作;否则,就说直线l在平面外,记作.公理1也可以用符号表示:.公理2刻画了平面特有的基本性质,它给出了确定一个平面的依据。不在一条直线上的三个点A、B、C所确定的平面,可以记成“平面ABC”。公理3告诉我们如果两个平面有一个公共点,那么它们必定还有另一个公共点,只要找出这两个平面的两个公共点,就找出了它们的交线。公理3是判定两个平面相交的依据,即要证明两个平面相交,必须且只需证明这两个平面有一个公共点。公理3是证明点在直线上的依据,即要证明一个点在某条直线上,可证该点是某两个平面的公共点,而该直线是这两个平面的交线。公理3是证明几个点共线的依据,即要证明几个点共线,可证这几个点都是某两个平面的公共点。实例:如果一条直线与两条平行直线都相交,那么这三条直线是否共面?解:两条平行直线确定一个平面,第三条直线有两点在此平面内,所以也在这个平面内。于是,这三条直线共面。异面直线及其相关性质异面直线的定义:我们把不同在任何一个平面内的两条直线叫做异面直线。如下图所示,已知两条异面直线a,b,经过空间任一点O作直线,我们把与所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角)。? 如果两条异面直线所成的角是直角,那么我们就说这两条异面直线互相垂直。两条互相垂直的异面直线a,b,记作.详解:(1)两异面直线所成的角与点O的选取无关。(2)两异面直线所成角的范围是.(3)判定空间两条直线是异面直线的方法:判定定理:平面外一点A与平面内一点B连成的直线与平面内不过点B的直线是异面直线。反证法:证明两直线共面不可能。平行直线公理4:平行于同一条直线的两条直线互相平行(传递性)。等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。详解:公理4表明空间中平行于一条已知直线的所有直线都互相平行,它给出了判断两条直线平行的依据。经过直线外一点,有且只有一条直线和这条直线平行。由等角定理可以得到如下两个推论: 推论1:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等。推论2:如果一个角的两边与另一个角的两边分别平行,那么这两组直线所成的角相等或互补。证明空间两条直线平行的方法:方法1:利用定义用定义证明两条直线平行,须证两件事:一是两直线在同一平面内;二是两直线没有公共点。方法2:利用公理4用公理4证明两条直线平行,只须证一件事:就是须找到直线c,使得,同时,由公理4,得到.空间中直线与直线的位置关系、直线与平面的位置关系空间中直线与直线的位置关系、直线与平面的位置关系:1.空间中直线与直线的位置关系如下图:2.直线与平面的位置关系如下图:详解:直线a与平面相交或平行的情况统称为直线在平面外,记作.直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。用符号表示:.详解:利用判定定理证明直线与平面平行必须具备三个条件:1 直线a在平面外,即;2 直线b在平面内,即;3 两直线a,b平行,即.判定直线与平面平行的方法:(1)利用定义:证明直线与平面无公共点;(2)利用判定定理:从直线与直线平行得到直线与平面平行。(3)反证法:假设直线与平面不平行,那么直线与平面相交或直线在平面内,由已知或定理、定理证明这是不平面与平面平行的判定定理:一个平面内的两条相交直线和另一个平面平行,则这两个平面平行。此定理也可用符号表示:.推论:如果一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。详解:利用判定定理证明两个平面平行,必须具备两个条件:有两条直线平行与另一个平面;这两条直线必须相交,两者缺一不可。判定两个平面平行的方法有以下几种:1 利用定义:正两个平面没有公共点;2 面面平行的判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行;3 两个平面同时平行于第三个平面,那么这两个平面平行;4 一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。直线与平面平行的性质直线与平面平行的性质:定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。此定理也可用符号表示:.即“线面平行,则线线平行”详解:在应用此定理判定直线与直线平行时,必须具备三个条件:直线a平行与平面,即;直线a在平面内,即;平面与平面相交于直线b,即,这三个条件缺一不可。判定线线平行的方法:平行线的定义:在同一平面内,不相交的两条直线平行;在同一平面内垂直于同一直线的两条直线平行;公理4:平行与同一直线的两条直线互相平行;现在学习的直线与平面平行的性质定理是第四种判定线线平行的方法。平面与平面平行的性质平面与平面平行的性质:定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。此定理也可用符号表示:.详解:我们根据连个平面平行即直线和平面平行的定义,容易得到如下结论:,也就是说,如果两个平面平行,那么其中一个平面内的任意一条直线平行于另一个平面。直线与平面平行判定定理与平面平行性质定理经常交替使用,也就是通过线线平行推出线面平行,在通过线面平行推出新的线线平行,复杂的题目还可以继续推下去。证明线面垂直的方法证明线面垂直的方法有:用定义:证明直线和平面内的所有直线都垂直;用判定定理:证明直线与平面内的两条相交直线垂直,在用此定理时一定要注意:已知直线与两条直线都垂直;两条直线都在所证的平面内;这两条直线必须相交,这一条易被忽略。利用判定定理的推论:即两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面;反证法:用此方法首先肯定直线与平面相交,再证明斜交不可能;同一法:这种方法在立体几何中是证题的重要手段,先作一条满足条件的平面的垂线,然后证明这条垂线就是要证的直线或说这条直线与所证直线是同一直线。二面角及二面角的平面角1.二面角如右图所示,一条直线和由这条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二画角的棱,这两个半平面叫做二面角的面。棱为AB,面为,记作二面角有时为了方便,也可在内(棱以外的半平面部分)分别取点P,Q,将这个二面角记作二面角,如果棱记作l,那么这个二面角记作二面角.2.二面角的平面角如右图所示,在二面角的棱l上任取一点O,以点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB所成的AOB叫做二面角的平面角。二面角的大小可以用它的平面角来度量,二面角的平面角是多少度,就说这个二面角是多少度。平面角是直角的二面角叫做直二面角。详解:二面角的大小可以用它的平面角来度量,二面角的平面角是几度就说这个二面角是几度。本书中,我们规定二面角的大小范围是,当二面角的两个面合成一个平面是,规定二面角的大小为.若一个二面角的平面角是直角,就说这个二面角为直二面角。二面角的平面角必须具备三个条件:角的顶点在二面角的棱上;角的两边分别在二面角的两个半平面内;角的两边分别与二面角的棱垂直。4、直线的倾斜角与斜率直线的倾斜角和斜率1.直线的倾斜角当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角叫做直线l的倾斜角。2.直线的斜率我们把一条直线的倾斜角的正切值叫做这条直线的斜率.斜率常用小写字母k表示,即.3.倾斜角与斜率k之间的关系;k不存在;4.斜率公式经过两点的直线的斜率公式.详解:1.当直线l与x轴平行或重合时,我们规定它的倾斜角为0°.因此,直线的倾斜角的取值范围为.2.倾斜角是的直线没有斜率;任何直线都有倾斜角,但不是任何直线都有斜率.3.同一条直线上任何两点的斜率都相等;当直线平行于y轴或与y轴重合时,公式不成立.两直线平行的判定设直线,的斜率分别为,若,则与的倾斜角与相等。即.详解:1 公式成立的前提条件是:两条直线的斜率存在,分别为,;与不重合。2 当两直线的斜率都不存在且不重合时,与的倾斜角都是,则.3 注意:若直线可能重合时,我们得到:两条直线垂直的判定如果两条直线都有斜率,且它们互相垂直,那么它们的斜率之积等于-1;反之,如果它们的斜率之积为-1,那么它们互相垂直,即详解:两条直线中,一条斜率不存在,同时另一条斜率等于零,则两条直线互相垂直,这样,两条直线垂直的判定可叙述为:一般地,或一条斜率不存在,同时另一条斜率等于零。若,则两直线必不垂直。直线的点斜式方程1.直线方程的定义:一个方程的解为坐标的点都是某一直线上的点;反过来,这条直线上的点的坐标都是这个方程的解,这时这个方程叫做这条直线的方程,这条直线叫做这个方程的直线。2.直线的点斜式方程的定义方程由直线上一定点及其斜率确定的,我们把这个方程叫做直线的点斜式方程,简称点斜式。详解:关于点斜式的几点说明:1 要注意到与是不同的,前者表示的直线上缺少一个点,后者才是整条直线。2 如果直线l过点且平行于x轴(或与x轴重合),这是倾斜角为, ,即,由点斜式得.3 如果直线过点且与x轴垂直,此时它的倾斜角为,斜率不存在,它的方程不能用点斜式来表示,这时直线方程表示为.经过点的直线有无数条,可分为两类:斜率存在的直线,方程为;斜率不存在的直线,方程为:.直线的斜截式方程直线的斜截式方程:斜截式:,其中k为斜率,b为直线在y轴上的截距,简称直线的截距。斜截式适用于不垂直于x轴的直线。详解:截距是实数,故可以是正数、负数和零,若直线过某点,则此点的坐标适合直线的方程,故可将点的坐标代入方程得等式。直线的两点式方程两点式方程:经过两点,(其中)的直线方程为,我们把它称之为直线的两点式方程,简称两点式。截距式方程:我们把直线与x轴交点(a,0)的横坐标a叫做直线在x轴上的截距,此时直线在y轴上的截距为b,方程由直线l在两个坐标轴上的截距a与b确定,所以叫做直线的截距式方程。详解:当直线与坐标轴垂直时不能用两点式.直线与坐标轴垂直或过原点时不能用截距式.若点,的坐标分别为,且线段的中点M的坐标为(x,y),则,此公式为线段的中点坐标公式。直线的一般式方程我们把关于x,y的二元一次方程(A,B不全为零)叫做直线的一般式方程,简称一般式。详解:关于直线一般式方程的两点说明:两个独立的条件可求直线方程求直线方程,表面上需求A、B、C三个系数,由于A,B不同时为零,若,则方程化为,只需确定,的值;若,则方程化为,只需确定,的值。因此,只要给出两个条件,就可以求得直线方程。指向方程的其他形式都可以化成一般形式,解题时,如果没有特殊说明应把最后的结果化为一般式,一般式也可以转化为其他形式。直线系1.直线系的定义:具有某一共同性质的直线的集合叫做直线系,它的方程叫做直线系方程.2.几种常见的直线系方程(1)共点直线系方程,其中为定点,k为参数.特殊地,(k为参数),表示过(0,b)点的直线系,不包括y轴.(2)平行直线系方程(k为常数,b为参数)表示斜率为k的平行直线系.(m为参数)表示与已知直线平行的平行直线系.(m为参数)表示与已知直线垂直的平行直线系.(3)过两直线交点的直线方程设两直线,.则过和交点的直线系方程是:(不包括)或(不包括),其中为参数.两条直线的交点坐标一般地,将两条直线的方程联立,得方程组,若方程组有唯一解,则两条直线相交,此解就是交点坐标;若方程无解,则两条直线无公共点,此时,两条直线平行。详解:解二元一次方程组的基本解法是代入法、消元法。两点间距离公式两点、间的距离公式特别地,原点与任一点的距离公式点到直线的距离公式点到直线的距离是.详解:1. 点到直线的距离公式适用于平面内任意一点到任一条直线的距离的求解,但是注意直线的方程必须是一般式。 2. 若点P在直线上,则点P到直线的距离公式仍然成立,且距离为零。 3. 点到几种特殊直线的距离:1 点到x轴的距离;2 点到y轴的距离;3 点到与x轴平行的直线的距离;4 点到与y轴平行的直线的距离;这几个结论没必要记忆,同学们只需画出图形,根据图形可直接观察得到,也可以利用点到直线的距离公式直接求解。两条平行直线间的距离两平行直线的间距离详解:对于公式的说明:1. 两平行线间的距离是一条直线上任意一点到另一直线的距离,也可以看做是两条直线上各取一点,这两点间的最短距离。 2. 使用此公式的前提有二:一是把直线化成一般式;二是两直线中x,y的系数必须相同。圆的标准方程一、圆的定义在平面上,到定点距离等于定长的点的集合,即点集:,其中定点A为圆心,定长r为半径。二、圆的标准方程:圆心在,半径r的圆的方程叫做圆的标准方程。特别的,圆心在原点,半径r的圆的方程为.三、用待定系数法求圆的方程用待定系数法求圆的方程有两种不同的选择。一般地,已知圆上三点时用一般方程(下一节将会学习);已知圆心和半径时,用标准方程。详解:1.在圆,(1)当时,圆过原点;(2)当,圆与x轴相切,当时,圆与y轴相切,当时,圆与两坐标轴相切;(3)当时,圆与y轴相切于原点,当时,圆与x轴相切于原点。(4)已知直径两端点的圆的方程:以为直径的两端点的圆的方程是点与圆的位置关系点与圆的位置关系有三种:点在圆上,点在圆内,点在圆外详解:圆的方程为,则圆的一般方程:将方程化为(1)当时,二元二次方程叫做圆的一般方程,圆心为半径为;(2)当时,方程表示一个点;(3)当时,方程不表示任何图形。详解:求圆的方程的基本方法:确定圆的方程需要三个独立的条件,“选标准,定参数”是解题的基本方法。其中选标准是根据已知条件选择恰当的方程形式,进而确定其中的三个参数,一般来讲,条件涉及圆上多个点时,选择一般方程;条件涉及圆心与半径时,选择标准方程。求圆的方程的一般步骤:根据题意选用圆的方程形式中的一种;根据所给条件,列出关于D,E,F或a,b,r的方程组;解方程组,求出D,E,F或a,b,r的值,并把它们代入所设的方程中,得到所求圆的方程。直线与圆的位置关系1.直线与圆有三种位置关系(1)直线与圆相交,有两个公共点;(2)直线与圆相切,只有一个公共点;(3)直线与圆相离,没有公共点。2.判定直线与圆的位置关系的方法(1)代数方法:(2)几何方法:判断圆心到直线的距离d与圆的半径r之间的大小关系:详解:(1)数形结合是解决直线与圆的位置关系的重要方法。(2)直线与圆相交,设弦长为L,弦心距为d,半径为r,则有,即半弦长、弦心距、半径构成直角三角形,数形结合,可利用勾股定理得到。求切线方程求切线方程主要有以下几种类型:1 已知切线的斜率,求圆的切线方程。这种切线,一般都有两条。设切线方程为,然后利用圆心到切线的距离等于半径求出b.2 已知切点,求圆的方程。过圆上一点作圆的切线有且只有一条。常用的方法:求出圆心与切点的连线的斜率,然后根据垂直关系求出切线的斜率,最后由点斜式求出切线方程。圆与圆的位置关系1.圆与圆的位置关系有相交,相切(内切,外切),相离(外离,内含)。2.判断两个圆的位置关系的方法设圆的和圆的半径分别为的,则有圆与圆的位置关系:详解:判断圆与圆的位置关系一般不用代数法,利用几何法的关键是判断圆心距与半径的关系。直线与圆的方程的应用用坐标法解决几何问题时,先用坐标和方程表示相应的几何元素:点、直线、圆,然后通过对坐标和方程的代数运算,把代数运算结果“翻译”成几何关系,得到几何问题的结论,这就是用坐标法解决几何问题的“三步曲”。第一步:建立适当的坐标系,用坐标和方程表示问题中涉及的几何元素,将平面几何问题转化为代数问题。第二步:通过代数运算,解决代数问题。第三步:把坐标运算结果“翻译”成几何结论。空间直角坐标系如图示:是单位正方体,以O点为原点,分别以射线OA,OC, 的方向为正方向,以线段OA,OC, 的长为单位长,建立三条坐标轴:x轴,y轴,z轴,这是我们说建立了一个空间直角坐标系. x轴,y轴,z轴叫做坐标轴,通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面,yOz平面,zOx平面。详解:在空间直角坐标系中,让右手拇指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系。空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组叫做点M在此空间直角坐标系中的坐标,记作,其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标。空间两点间的距离公式空间中两点间的距离是平面上两点间的距离公式的推广,如果知道几何体上任意两点的坐标,我们就可以直接套用公式:设,则,特别地,到原点的距离.详解:简而言之,空间中两点的距离公式就是平面上两点间距离公式的推广。专心-专注-专业

    注意事项

    本文(数学必修二概念知识点大全(共26页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开