欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    全国高中数学联赛分类解析-2006-2010立体几何(共5页).doc

    • 资源ID:12217670       资源大小:511KB        全文页数:5页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    全国高中数学联赛分类解析-2006-2010立体几何(共5页).doc

    精选优质文档-倾情为你奉上立体几何(06)4. 在直三棱柱中,. 已知与分别为 和的中点,与分别为线段和上的动点(不包括端点). 若,则线段的长度的取值范围为 A. B. C. D. 【答】 ( )4.【答】 ( A )【解】建立直角坐标系,以为坐标原点,为轴,为轴,为轴,则(),()。所以,。因为,所以,由此推出 。又,从而有 。(06)10. 底面半径为1cm的圆柱形容器里放有四个半径为cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切. 现往容器里注水,使水面恰好浸没所有铁球,则需要注水 cm3.10. 【解】设四个实心铁球的球心为,其中为下层两球的球心,分别为四个球心在底面的射影。则ABCD是一个边长为的正方形。所以注水高为。故应注水。(07)1. 如图,在正四棱锥PABCD中,APC=60°,则二面角APBC的平面角的余弦值为( B )A. B. C. D. 解:如图,在侧面PAB内,作AMPB,垂足为M。连结CM、AC,则AMC为二面角APBC的平面角。不妨设AB=2,则,斜高为,故,由此得。在AMC中,由余弦定理得。(07)9. 已知正方体ABCDA1B1C1D1的棱长为1,以顶点A为球心,为半径作一个球,则球面与正方体的表面相交所得到的曲线的长等于 。解:如图,球面与正方体的六个面都相交,所得的交线分为两类:一类在顶点A所在的三个面上,即面AA1B1B、面ABCD和面AA1D1D上;另一类在不过顶点A的三个面上,即面BB1C1C、面CC1D1D和面A1B1C1D1上。在面AA1B1B上,交线为弧EF且在过球心A的大圆上,因为,AA1=1,则。同理,所以,故弧EF的长为,而这样的弧共有三条。在面BB1C1C上,交线为弧FG且在距球心为1的平面与球面相交所得的小圆上,此时,小圆的圆心为B,半径为,所以弧FG的长为。这样的弧也有三条。于是,所得的曲线长为。(08)4若三个棱长均为整数(单位:cm)的正方体的表面积之和为564 cm2,则这三个正方体的体积之和为 ( A )A. 764 cm3或586 cm3 B. 764 cm3 C. 586 cm3或564 cm3 D. 586 cm3解 设这三个正方体的棱长分别为,则有,不妨设,从而,故只能取9,8,7,6若,则,易知,得一组解若,则,但,从而或5若,则无解,若,则无解此时无解若,则,有唯一解,若,则,此时,故,但,故,此时无解综上,共有两组解或体积为cm3或cm3(08)12一个半径为1的小球在一个内壁棱长为的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是 解 如答12图1,考虑小球挤在一个角时的情况,记小球半径为,作平面/平面,与小球相切于点,则小球球心为正四面体的中心,垂足为的中心因答12图1 ,故,从而记此时小球与面的切点为,连接,则考虑小球与正四面体的一个面(不妨取为)相切时的情况,易知小球在面上最靠近边的切点的轨迹仍为正三角形,记为,如答12图2记正四面体的棱长为,过作于答12图2 因,有,故小三角形的边长小球与面不能接触到的部分的面积为(如答12图2中阴影部分) 又,所以由对称性,且正四面体共4个面,所以小球不能接触到的容器内壁的面积共为1. (10)正三棱柱的9条棱长都相等,是的中点,二面角,则 .解一:如图,以所在直线为轴,线段中点为原点,所在直线为轴,建立空间直角坐标系.设正三棱柱的棱长为2,则,从而,.设分别与平面、平面垂直的向量是、,则由此可设 ,所以,即.所以 .解二:如图, .设与交于点 则 .从而平面 .过在平面上作,垂足为.连结,则为二面角的平面角.设,则易求得.在直角中,,即 .又 .专心-专注-专业

    注意事项

    本文(全国高中数学联赛分类解析-2006-2010立体几何(共5页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开