2022年初中分式知识点总结汇编 .pdf
学习 -好资料更多精品文档分式知识点一:分式的定义一般地, 如果 A,B 表示两个整数, 并且 B 中含有字母, 那么式子BA叫做分式, A 为分子,B 为分母。知识点二:与分式有关的条件分式有意义:分母不为0(0B)分式无意义:分母为0(0B)分式值为0:分子为 0 且分母不为0(00BA)分式值为正或大于0:分子分母同号(00BA或00BA)分式值为负或小于0:分子分母异号(00BA或00BA)分式值为1:分子分母值相等(A=B )分式值为 - 1:分子分母值互为相反数(A+B=0 )知识点三:分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。字母表示:CBCABA,CBCABA,其中 A、B、C 是整式, C0。拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即BBABBAAA注意:在应用分式的基本性质时,要注意C0 这个限制条件和隐含条件B0。知识点四:分式的约分定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。步骤:把分式分子分母因式分解,然后约去分子与分母的公因。注意:分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。知识点四:最简分式的定义一个分式的分子与分母没有公因式时,叫做最简分式。知识点五:分式的通分分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。分式的通分最主要的步骤是最简公分母的确定。最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。确定最简公分母的一般步骤: 取各分母系数的最小公倍数;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 5 页 - - - - - - - - - - 学习 -好资料更多精品文档 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; 相同字母(或含有字母的式子)的幂的因式取指数最大的。 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。注意:分式的分母为多项式时,一般应先因式分解。知识点六分式的四则运算与分式的乘方分式的乘除法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示为:dbcadcba分式除以分式:把除式的分子、分母颠倒位置后,与被除式相乘。式子表示为ccbdadbadcba分式的乘方:把分子、分母分别乘方。式子nnnbaba分式的加减法则:同分母分式加减法:分母不变,把分子相加减。式子表示为cbacbca异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为bdbcaddcba整式与分式加减法:可以把整式当作一个整数,整式前面是负号,要加括号,看作是分母为 1 的分式,再通分。分式的加、减、乘、除、乘方的混合运算的运算顺序先乘方、再乘除、后加减,同级运算中,谁在前先算谁,有括号的先算括号里面的,也要注意灵活,提高解题质量。注意:在运算过程中,要明确每一步变形的目的和依据,注意解题的格式要规范,不要随便跳步,以便查对有无错误或分析出错的原因。加减后得出的结果一定要化成最简分式(或整式)。知识点六整数指数幂引入负整数、零指数幂后,指数的取值范围就推广到了全体实数,并且正正整数幂的法则对对负整数指数幂一样适用。即nmnmaaamnnmaannnbbaanmnmaaa(0a)nnbabanna1na(0a)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 5 页 - - - - - - - - - - 学习 -好资料更多精品文档10a(0a) (任何不等于零的数的零次幂都等于1)其中 m,n 均为整数。科学记数法若一个数 x 是 0 x10 的数则可以表示为n10a(10a1,即 a 的整数部分只有一位,n为整数)的形式,n的确定 n=比整数部分的数位的个数少1。如 120 000 000=8101.2知识点七分式方程的解的步骤去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)解整式方程,得到整式方程的解。检验,把所得的整式方程的解代入最简公分母中:如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为 0,则是原方程的解。产生增根的条件是:是得到的整式方程的解;代入最简公分母后值为0。在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根 。如果一个 分式方程 的根能使此方程的公分母 为零 ,那么这个根就是原方程的增根 。增根 的产生的原因:对于 分式方程 ,当分式中,分母的值为零时,无意义,所以分式方程 ,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程 以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程 的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。分式方程两边都乘以最简公分母 化分式方程为 整式方程 ,这时未知数的允许值扩大,因此解分式方程容易发生増根。例如 : 设方程A(x)=0 是由方程B(x)=0 变形得来的 ,如果这两个方程的根完全相同(包括7 个 0 9 个数字精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 5 页 - - - - - - - - - - 学习 -好资料更多精品文档重数 ),那么称这 两个方程等价.如果x=a 是方程A(x)=0 的根但不是B(x)=0 的根 ,称 x=a 是方程的增根 ;如果 x=b 是方程 B(x)=0 的根但不是 A(x)=0 的根 ,称 x=b 是方程 B(x)=0 的失根 . 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 5 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 5 页 - - - - - - - - - -