欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    最新北师大版九年级数学上2.4用因式分解求解一元二次方程ppt公开课优质课件.ppt

    • 资源ID:12320943       资源大小:785KB        全文页数:16页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    最新北师大版九年级数学上2.4用因式分解求解一元二次方程ppt公开课优质课件.ppt

    2.4 用因式分解法求解一元二次方程第二章 一元二次方程导入新课讲授新课当堂练习课堂小结1.了解因式分解法的解题步骤,会用因式分解法解一元二次方程.(重点)2.能根据具体一元二次方程的特征,灵活选择方程的解法.(难点)学习目标导入新课导入新课配方法:把常数项移到方程的右边,得x2 - - 3x = - -2. 两边都加上( )2,得x2 - - 3x +( )2=( )2. 即(x - - )2 = . 两边开平方,得 x - - = .= . 即 x - - = = ,x - - = .= . 所以x1=2,x2=1.3232323214321232321212问题:请用两种不同方法解下面一元二次方程?x2 - - 3x + 2= 0 公式法:这里a=1,b=-3,c=2.b2-4ac=(-3)2-4120,x= x1=2,x2=1.313 1,2 12因式分解法解一元二次方程一例1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?小颖,小明,小亮都设这个数为x,根据题意得,可得方程 x2 = 3x由方程 x2 = 3x ,得x2 - - 3x = 0因此 x1 = 0, x2 = 3.所以这个数是0或3.小颖的思路:小明的思路:293x 方程 x2 = 3x 两边 同时约去x, 得 x = 3 . 所以这个数是3.讲授新课讲授新课小亮的思路: 由方程 x2 = 3x ,得 x2 - - 3x = 0 即 x (x - - 3) = 0 于是 x = 0 , 或 x - - 3 = 0. 因此 x1 = 0 , x2 = 3 所以这个数是0或3小亮想: 如果ab= 0,那么 a=0 或 b=0问题:他们做得对吗?为什么? 当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一元二次方程的方法称为因式分解法. 1.用因式分解法的条件是:方程左边易于分解,而右边等于零.2.关键是熟练掌握分解因式的知识.3.理论依据是“如果两个因式的积等于零,那么至少有一个因式等于零.”提示例2:解下列方程: (1)5x2 = 4x ; (2)x 2 = x (x - 2).54解:5x2 - - 4x = 0, x (5x - - 4) = 0. x = 0 或 5x 4 =0. x1 = 0 , x2= .解:(x - 2) x (x - 2) = 0, (x - 2) (1 - x) = 0. x 2 = 0 或 1 x = 0. x1 = 2 , x2=1. (1)对于一元二次方程(x - p)()(x - q)=0,那么它的两个实数根分别为p,q.(2)对于已知一元二次方程的两个实数根为p,q,那么这个一元二次方程可以写成(x - p)(x - q )=0的形式.结论拓展提升 解下列方程:(1)(2x + 3)2 = 4 (2x + 3) ; (2)(x - - 2) 2 = (2x + 3) 2.解:(2x + 3)2 - - 4 (2x + 3) =0 , (2x + 3) (2x + 3 - - 4) = 0, (2x + 3) (2x - - 1) = 0. 2x + 3 = 0 或 2x - - 1 = 0.21 , 23- 21xx 解:(x - - 2)2 - - (2x + 3) 2 =0, ( x - -2+ 2x+ 3) (x - -2 - - 2x - - 3)=0, (3x + 1)(x + 5) = 0. 3x + 1 = 0 或 x + 5 = 0. 5 , 31- 21xx选用适当的方法解一元二次方程二例3: 用适当的方法解方程:(1)3x(x + 5)= 5(x + 5); (2)(5x + 1)2 = 1;分析:该式左右两边可以提取公因式,所以用因式分解法解答较快.解:化简 (3x - -5) (x + 5) = 0. 即 3x - - 5 = 0 或 x + 5 = 0.5. , 35 21xx分析:方程一边以平方形式出现,另一边是常数,可直接开平方法.解:开平方,得 5x + 1 = 1. 解得, x 1= 0 , x2 = .25(3)x2 - - 12x = 4 ; (4)3x2 = 4x + 1;分析:二次项的系数为1,可用配方法来解题较快.解:配方,得 x2 - - 12x + 62 = 4 + 62, 即 (x - - 6)2 = 40. 开平方,得 解得 x1= , x2= .102 6 -x 102 6.102 6分析:二次项的系数不为1,且不能直接开平方,也不能直接因式分解,所以适合公式法.解:化为一般形式 3x2 - - 4x + 1 = 0. =b2 - - 4ac = 28 0, .37232284- )(x填一填:各种一元二次方程的解法及适用类型.拓展提升一元二次方程的解法适用的方程类型直接开平方法配方法公式法因式分解x2 + px + q = 0 (p2 - 4q 0)(x+m)2n(n 0)ax2 + bx +c = 0(a0 , b2 - 4ac0)(x + m) (x + n)01.快速说出下列方程的解(1)(4x - - 1)(5x + 7) = 0; x1 =( ), x2= ( ).(2) (x - - 2)(x - - 3) = 0; x1 =( ), x2 = ( ).(3)(2x + 3)(x - - 4) = 0; x1 =( ), x2 = ( ).2.将下面一元二次方程补充完整.(1)(2x- - )( x + 3) = 0; x1= , x2= - - 3.(2) (x- - )(3x - - 4) = 0; x1= 2 , x2= .(3)(3x+_)(x + ) = 0; x1= , x2= - -5.415723234253431512- -15当堂练习当堂练习3.用适当的方法解一元二次方程 (1)5(x2 - - x)= 3 (x2 + x) ; (2)(x - -2)(x - - 3) = 12.解:整理 , 得 5x(x - - 1)- - 3 x (x + 1) = 0, 即 x(5x - - 5 - - 3x - - 3) = 0, 化简 x ( x - - 4) = 0. x = 0 或 x - - 5 = 0. x1 = 0 , x 2 = 5.解:整理,得 x2 - - 5x - - 4 =0, 这里a=1,b=-5,c=-4.b2-4ac=(-6)2-41(-4)0,x= x1= ,x2= . 541.254125412用因式分解法解一元二次方程步骤:选用适当的方法解一元二次方程.1.移项.2.把方程的左边分解成两个一次因式的积.3.令每个因式分别等于0,得到两个一元二次方程.4.解这两个一元二次方程.课堂小结课堂小结见本课时练习课后作业课后作业

    注意事项

    本文(最新北师大版九年级数学上2.4用因式分解求解一元二次方程ppt公开课优质课件.ppt)为本站会员(醉****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开