SPC与制程能力评估.pptx
Prepare by : Robin MuPrepare by : Robin MuQS Section, QS DivisQS Section, QS Divisi ion, IPT on, IPT July 24th, 2007July 24th, 2007教材編號教材編號: :IPT-IPT-M2M2XXXXXX版本版本: :V1.0V1.0版版會簽單位會簽單位會簽單位會簽單位相應主管相應主管會簽單位會簽單位相應主管相應主管 核准核准: 部級主管部級主管 擬制人擬制人: Robin MuPrepared byPage 21.教材初版教材初版修訂紀錄修訂紀錄Prepared byPage 3目目 錄錄ItemNo.PageLink1. 基础理论2. 统计基础知识 3. 制程变异的原因 4. 制程能力分析 5. SPC的工具-管制图 6. SPC的运作流程 51224305484Prepared byPage 41930195019501970197019801980現在品管過程過濾不良檢驗不良制造技術設計/系統/習慣產品不良率高不良率不良率仍相當高(%)百分不良率已大為降低低不良率(PPM)6品質1.1. 1.1. 品質過程品質過程与与不良率之演進不良率之演進1. 1. 基础理论基础理论Prepared byPage 5常規管制方法-檢驗1.2. 1.2. 传统品质观念与目前品质观念的差别传统品质观念与目前品质观念的差别产出95个最終檢驗CTQ不合格品2個清潔5個缺陷: 5個S1S2S3S4S5S6S7S81 0 0个CTQ返工1個CTQPrepared byPage 6當一個設備由100個部件組成,即使每一個部件的合格率爲99.97%,設備的合格率也僅爲99.97%?99.97%=76.31%當該設備由500個部件組成,則該設備的合格率僅爲25.83%99.97%的合格率是否足夠?每一個部件的合格率均爲99.97%Prepared byPage 7下限下限上限上限缺陷缺陷無缺陷性能被認爲是完全不一樣的性能被認爲是一樣的門柱思維传统的品质概念Prepared byPage 8Prepared byPage 91.3.1. 1924年Walter Shewhart博士在貝爾實驗室开发了一套 统计学流程控制理论;1.3.2. 上世纪20年代期间, Shewhart博士在一系列演讲中提出 了他的理论, 并在高品质制造产品的经济性控制一书中 发表(1931);1.3.3. 1939年Shewhart與戴明合寫了“品質觀點的統計方法”;1.3.4. 上世纪40年代期间, 战时生产使该理论得到广泛的应用;1.3.5. 1950年戴明到日本講學, 介紹SQC觀念及方法, SQC是 發現問題才解決, 浪費較大, 後來發展出了SPC;1.3.6. 美國汽車業廠商對SPC非常重視, 並使之得到廣泛應用;1.3.7. ISO9000也十分重視SPC的應用, 對其有專門章節要求.1.3. 1.3. SPCSPC的历史的历史Prepared byPage 101.4. 1.4. SPCSPC的定义的定义 統計過程控制(SPC)是基於統計原理, 利用圖形技術, 對 流程中關鍵(質量)特性進行監控, 並通過判定準則, 及時顯示 異常, 從而達到發現問題、預防不良產生的一種管理工具. SPC能夠將海量數據中的異常通過圖形直觀展現出來, 適用 於各種須投入大量資源, 要長期管控的流程或特性. SPC有以下作用: A. 确保制程持续稳定、可预测; B. 提高产品质量、生产能力、降低成本; C. 为制程分析提供依据; D. 区分变差的特殊原因和普通原因, 作为采取局部措施 或对系统采取措施的指南.Prepared byPage 112. 2. 统计基础知识统计基础知识2.1. 2.1. 正态分布正态分布Prepared byPage 12-3-2-1+1+2+30.135%0.135%99.73%95.45%68.27%A. 測定的平均值(x)與群體平均值()一致; B. 曲線的最高點與橫軸垂直相交處, 即為群体平均值()以此點為中心, C. 其曲線左右兩邊對稱;C. 正态分布左右兩尾與橫軸漸漸靠近, 但不與橫軸相交;D. 曲線下橫軸上之面積等於“1”, 曲線下橫軸上之面積分布情況為: (-)至()範圍內的面積約占总面積的68.27%; (-2)至(2)範圍內的面積約总占面積的95.45%; (-3)至(3)範圍內的面積約占总面積的99.73%.Prepared byPage 132.2. 2.2. 数据的类别数据的类别abXPrepared byPage 14Xx1x2x3x4x5x6x7Prepared byPage 15 “母體”是指組成某一特定群體的全部單位, 有時母體大到 無法測量. “樣本”是指該特定母體中的某些單位, 要求母體中的每一個 單位都有同等機會被用來測量, 即樣本必須是隨機的.2.3. 2.3. 抽样抽样母體樣本母體樣本Prepared byPage 16隨機抽樣隨機抽樣: 每個均有被選上的相等机會Prepared byPage 17這 樣 不 是 隨 機 抽 樣這 樣 不 是 隨 機 抽 樣 ! ! ! ! !Prepared byPage 18層別式抽樣層別式抽樣: 母体被“層別”成几個組, 在每個組內隨机選擇.Prepared byPage 19系統隨機抽樣系統隨機抽樣: 每隔n個抽取一個樣本.Prepared byPage 20行進中的過程行進中的過程分組抽樣分組抽樣: 每小時在該點抽3個樣本.Prepared byPage 21計數數據計數數據: 一般情況下取50100個計量數據計量數據: 每個分組最少30個Prepared byPage 222.4. 2.4. SPCSPC相关术语相关术语2.4.1 Xi: 实测数据, X1X5 是指一个样组中的5个实测数据;2.4.2 Xbar: 表示n个数据的平均值, 即: Xbar=(X1+Xn)/n;2.4.3 T: 表示公差值, 即: 公差值=规格最大值规格最小值 (T=USLLSL);2.4.4 : 表示规格中心值;2.4.5 R: 极差值, 即:極差值=样组中之最大值样组中最小值;2.4.6 Rm: 表示样组之极差值, 即: 第二组Rm值=第二组X值 第一组X值, 依此类推;2.4.7 Cpk: 表示制程能力指數;2.4.8 S: 樣本標准差.Prepared byPage 233. 3. 制程变异的原因制程变异的原因普通原因普通原因: 是造成随着时间推移具有稳定的且可重复的分布随着时间推移具有稳定的且可重复的分布 过程中的许多变差的原因过程中的许多变差的原因, 我们称之为“处于统计控制状态”、 “受统计控制”, 或有时简称“受控”, 普通原因表现为一个稳定 系统的偶然原因. 只有变差的普通原因存在且不改变时, 过 程的输出才可以预测.特殊原因特殊原因: 是造成不是始终作用于过程变差的原因不是始终作用于过程变差的原因, 即当它们 出现时将造成过程的分布改变. 除非所有的特殊原因都被查 找出来并且采取了措施, 否则它们将继续用不可预测的方式 来影响过程的输出. 如果系统内存在变差的特殊原因, 随时间 的推移, 过程的输出将不稳定.Prepared byPage 24項 目普通原因特殊原因定 義不可避免之原因, 非人為原因, 共同原因, 偶然原因可避免的原因, 人為原因, 特殊原因,異常原因, 局部原因等影 響隨時間推移具有穩定的,且可重复的分布過程,稱為“處于統計控制狀態”簡稱 “受控”.指造成不是始終作用于過程的變差的原因,即當它們出現時將造成整個過程的分布改變.例 子同一人使用同一儀器于不同時間量測產品之差異不同方向不同位置測量軸徑原材料重量气候、环境的微小变化合格原料的微小变化机械的微小震动刀具的微量磨损生產條件設定錯誤使用不合格材料加工機器差異材料之不同设备调整不当新手违背操作规程作业刀具过量磨损加工方法的改变對產品 的影響微小, 不明顯明顯而巨大是否值得追查原因不值得值得而且可以找到Prepared byPage 25時間過 程 受 控 制 且 能 力 符 合 規 範過程不受控制能力也不符合規範Prepared byPage 26時間過程受控制但能力不符合規範要求過程受控制且能力符合規範要求Prepared byPage 27局部措施通常用来消除变差的特殊原因通常由与过程直接相关的人员实施大约可纠正15%的过程问题对系统采取措施通常用来消除变差的普通原因几乎总是要求管理措施,以便纠正大约可纠正85%的过程问题Prepared byPage 28解决普通原因的系统措施解决异常原因的局部措施解决异常原因的局部措施UCLUCLLCLLCLPrepared byPage 29制程能力是工序在管制状态时, 其工序生产的产品品质变化有多少程度的值, 或指在管制状态(稳定状态)下, 工序能制造出来的品质水平的程度.而制程能力分析是指針對一個過程, 在滿足顧客的期望上,表現得有多好的一種研究.4. 4. 制程能力分析制程能力分析4.1 4.1 制程能力的定义制程能力的定义Prepared byPage 30 短期制程能力 短期制程能力是隻存在偶然原因时的制程能力, 表示取樣 數據都具有同樣的品質特性, 但有主要技術要素引起品質 特性變化, 因此品質特性變化越大, 散布也就越大, 短期 制程能力也就越差. 長期制程能力 長期制程能力是包括組內誤差和組間誤差, 為了改善技術 和工序管理, 必須判斷工序是否穩定時, 用長期制程能力 的特性來取樣, 來確認包括管理要素引起的變化和技術的 要素引起的變化.Prepared byPage 31制程能力隨時間的延續,平均值及分布形狀產生變化稱為偏移/漂移現象.偏移是制程的突然變化.漂移是制程隨時間緩慢發生的變化.Prepared byPage 32 收集過程數據是為了對過程進行分析和研究, 並為最終進行 過程改善做好準備. 如何收集數據才能保証所收集的數據能 代表整個過程的現狀、並保証過程的短期和長期能力都能夠 被評估? 合理分組是收集數據的一種策略, 通過合理分組可區分短期 和長期誤差, 從而可以確認過程目前的問題是技術實力不夠 (Zst太小), 還是控制水平差(Zst與Zlt差異太大)4.2.1 4.2.1 合理分組合理分組( (Rational SubgroupsRational Subgroups) )的目的的目的4.2 4.2 数据收集策略数据收集策略 在收集過程數據時, 我們一般會收集較長時間范圍內的很多 組數據(因為數據收集太少, 不能把握過程的現狀全貌). 收集數據時, 要求每組內的數據隻包含偶然原因誤差, 組與組 之間存在異常原因誤差和偶然原因誤差, 這樣收集的數據可 對過程的長期能力和短期能力分別作出評估.4.2.2 4.2.2 組內誤差和組間誤差組內誤差和組間誤差Prepared byPage 33組內誤差和組間誤差Process ResponseProcess ResponseTimeTime組間誤差組內誤差Rational SubgroupsRational SubgroupsPrepared byPage 34合理分組的步驟如下: A. 首先確定可能影響CTQ的各種輸入變量(應從生產班次、 操作員、材料、方法、設備等方面考慮); B. 從以上輸入變量中選出可能會對CTQ產生重大影響的 幾個因素; C. 制定抽樣計劃, 確保每個數據組中隻有偶然原因誤差, 每 組取樣25個, 組內樣本盡短時間內收集; D. 測量樣本並記錄數據, 為後續分析做好準備; E. 收集的數據組別要足夠多.4.2.3 4.2.3 如何進行合理分組如何進行合理分組Prepared byPage 35目標值(Target) 每一種可量測的特性, 都會有一個想要的績效水準, 就是 通常所說的目標值. 例如: 體溫- 36.8 上班時間- 8:00 a.m.4.3.1 4.3.1 基本术语及定义基本术语及定义4.3 4.3 连续型数据分析连续型数据分析規格界限(上限/下限)(Specification Limits) 很多過程活動與過程結果有一個規格范圍, 该范围提供允 許超出或低於績效目標值的界限. 例如: LSL 目標值 USL 體溫 36.5 36.8 37.3 上班時間 6:30a.m. 8:00a.m. 8:02a.m.Prepared byPage 36平均數(Mean): 一組數據的平均值, 通常以“ ”表示. 例如: 體溫 36.7 36.9 37.3 37.1 37.2 36.8 37.0 平均值=37.0偏差(Deviation): 指某個特定量測值與所有量測值平均數之間的距離.X並非所有的量測結果與目標值都是一致的, 此現象稱為變異, 並非所有的變異都是不符合要求的, 某個變異雖然偏離目標, 但仍是符合規格要求的.Prepared byPage 37標準偏差(Standard Deviation): 指整個數據組的整體離差.Prepared byPage 38缺點率: 根據目標值, 規格上/下限繪制某一過程量測結果的分布 曲線時, 一些量測結果會超出規格界限. 位於曲線以下但 超出規格上/下限范圍的數據所佔的比例或百分比.Prepared byPage 39Cp是衡量制程潛在能力的一個指數, 它未考慮到制程輸出平均值的偏移, 隻考慮制程輸出分布的離散程度與制程規格的比較結果. 計算公式如下:Cp反映了一個過程的潛在能力, 它假設過程均值與規格中心值完全重合. CP值越大, 表明制程能力越高.Cp=USL-LSL6stUSL=規格上限LSL=規格下限st=短期標準差4.3.2 4.3.2 衡量短期制程能力的指数衡量短期制程能力的指数Prepared byPage 40Cpk是衡量制程實際能力的一個指數, 它考慮了制程輸出平均值的偏移, 計算公式如下:T=(USL-LSL)/2 Cpk=(1-K)Cp =(1-K)USL-LSL6stK= T -XUSL-LSL2Cpk= (1-ICaI)*Cp單側下限制程能力指數單側上限制程能力指數Prepared byPage 41准確度Ca精確度Cp精密度CPkCa/Cp/CPk之間的概念關係Cpk=Cp(1-ICaI)Prepared byPage 42例: 一批軸承, 抽樣量測尺寸如下: 10.52 10.53 10.48 10.47 10.49 10.50 10.48 10.52 10.51 10.48 10.50 10.50 10.51 10.49 10.50 10.52 10.50 10.49 10.48 10.49 10.50 10.51 10.48 10.48 10.50 1). 若Spec 10.500.05, 則Cpk為多少? 2). 若Spec 10.55Max, 則Cpk為多少?解: 1). 2). 46. 02)05. 0(05. 050.1049.101029. 06)05. 0(05. 0)1 (029. 02402. 01)(49.102543.2622CaCpCpknxxsnxXii69. 0029. 0349.1055.103X-USLsCpkPrepared byPage 434.3.3 4.3.3 衡量长期制程能力的指数衡量长期制程能力的指数 Pp/Ppk 計算公式如下:Pp=USL-LSL6ltUSL=規格上限LSL=規格下限lt =長期標準差Ppk= USL LSL3lt- X_Prepared byPage 444.3.4 4.3.4 制程能力指數分析制程能力指數分析 A. 當实际中心值等於規格中心值時, Cpk=Cp, 當实际中心值 不等於規格中心值時, CpkCpk1.33合格理想狀態,繼續維持.31.33Cpk1.00警告使制程保持於管制狀態,否則產品隨時有發生不良品的危險,需注意.41.00Cpk0.67不足產品有不良品產生,需作全數遷別,制程有妥善管理及改善之必要.50.67Cpk非常不足應採取緊急措施,改善品質並追究原因,必要時規格再作檢討.Prepared byPage 46USL=160X-Bar= 100Z=USL-160-10020= 3.0From Z table, for Z=3.0 , P(defect)= 0.00135僅有單側上規格限4.3.6 Sigma4.3.6 Sigma水准水准-Z-ZPrepared byPage 47USL=160 = 110 P(defect)= 0.0061+ 0.000233=0.00644雙側規格限LSL=40From Z table, for P(defect)= 0.00644, Z=2.487ZUSL=USL-160-11020=2.5P(d)us=0.00621LSL-ZLSL=40-11020= 3.5P(d)ls=0.000233Prepared byPage 484.3.7 4.3.7 長期長期Z Zlt ltPrepared byPage 49Prepared byPage 50Prepared byPage 51單位(N-Unit)缺點(D-Defect)機會(O-Opportunity)每百萬個機會的缺點數(DPMO)單位數: 4機會數: 4缺陷數: 6DPU=6/4=1.5DPO=6/16=0.375DPMO=DPO*1000000=3750004.4.1 4.4.1 基本术语及定义基本术语及定义4.4 4.4 离散型数据分析离散型数据分析Prepared byPage 52以Z值換算表將DPMO轉換成值不良率為37.5%, 查表可得知, Zst為0.32.4.4.2 4.4.2 制程能力分析制程能力分析Prepared byPage 535. SPC5. SPC的工具的工具-管制图管制图 Mean Standard deviationX averageS Sample stand deviationPopulation總體NSample樣 本n 直方圖正態分布圖n30時直方圖 正態分布圖 管制圖 一種以實際產品品質特性與根據過去經驗所判明的制程能力的管制界限比較,而以時間順序用圖形表示者.Prepared byPage 54旋轉90解析+3s-3su-3s管制+3suUCLCLLCLPrepared byPage 55時間1時間2時間3管制上限管制下限規格下限X1X2X3X4X1X2X1X3X4X3X1X2X3X4X2規格上限管制中心值(規格值)Prepared byPage 56均值中位數管制圖均值極差管制圖均值標準差管制圖單值移動極差管制圖不合格品率管制圖不合格品數管制圖缺陷數管制圖單位缺陷數管制圖Prepared byPage 57Prepared byPage 58 5.2.1 均值極差管制圖 均值極差管制圖是一種計量值管制圖, 控制物件的資料 全部來自連續型資料. 優點: 資料搜集量小, 計算方便; 缺點: 隨著樣本容量的增大, 效率降低. 中心線和控制限: Prepared byPage 59252015105Subgroup0301300299Sample MeanMean=300.0UCL=301.2LCL=298.943210Sample RangeR=1.916UCL=4.051LCL=0Xbar/R Chart for C1-C5Prepared byPage 60 5.2.2 均值标准差管制圖 中心線和控制限: Prepared byPage 61252015105Subgroup0301300299Sample MeanMean=300.0UCL=301.2LCL=298.91.51.00.50.0Sample StDevS=0.7835UCL=1.637LCL=0Xbar/S Chart for C1-C5Prepared byPage 62 5.2.3 單值移動極差管制圖 單值移動極差管制圖也是一種計量值管制圖, 控制物件的 資料主要來自於那些破壞性實驗或無須大量抽查的實驗. 優點: 資料搜集量小, 計算方便 缺點: 靈敏度較差 中心線和控制限: 12.662.66kiiIsIsIxCLxkUCLxRLCLxR11,(2,3, )ksiiiixx k Rxxiki其中, =213.270sssksiiRsRsRRCLRkUCLRLCLMR图X图(视为0)Prepared byPage 63252015105Subgroup02.51.50.5Individual ValueMean=1.351UCL=2.170LCL=0.53261.00.50.0Moving RangeR=0.298UCL=1.006LCL=0I and MR Chart for C1Prepared byPage 64 5.2.4 不合格品率管制圖 中心線和控制限: 13(1)13(1)npCLpnUCLpppnLCLpppn其中, 若LCL0, 令LCL=0.Prepared byPage 6525201510500.070.060.050.040.030.020.010.00Sample NumberProportionP Chart for C4P=0.02017UCL=0.05233LCL=0Prepared byPage 66 5.2.5 不合格品数管制圖 不合格品數管制圖同不合格品率控制圖一樣是一種計數 型管制圖, 在原理上兩者並無差別, 但在一些細節上兩者 還是存在某種差異, 不合格品數控製圖樣本大小必須為定 值, 而不合格品率控制圖中樣本大小可以不等. 中心線和控制限: 13(1)3(1)kiip nC LnpnnU C LnpnppLC Lnpnpp其中, 若LCL0, 令LCL=0 Prepared byPage 67Prepared byPage 68 5.2.6 缺陷数管制圖 缺陷數管制圖是用來控制產品上疵點或缺陷數目的管制 圖, 同前面兩節所介紹的一樣都屬於計數型管制圖. 中心線和控制限: 缺陷233kcccCLcUCLccLCLcc1k其中, 若LCL0, 令LCL=0 Prepared byPage 69Prepared byPage 70 5.2.7 单位缺陷数管制圖 單位缺陷數管制圖同缺陷數管制圖一樣都屬於計數型管 制圖, 它與缺陷數控製圖的區別是, 缺陷數控製圖中樣本 量必須相同, 而單位缺陷數控製圖中樣本量可以不同. 中心線和控制限: 其中, 若LCL1N中心線性質Yn 9平均值-標準差平均值中位數n=29平均值-全距Y不良數缺點數YNYNPrepared byPage 73EXCEL版控制圖Prepared byPage 74ObservationIndividual Value6543213210-1-2-3-4_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-11I Chart of 1A有1點在A區以外者.(口訣:1A外)Prepared byPage 75ObservationIndividual Value109876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-122I Chart of 90連續9點在單側.(口訣:9單側)Prepared byPage 76連續6點持續的上升或下降.(口訣:6升6降)ObservationIndividual Value876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-133I Chart of 7L6L3Prepared byPage 77連續6點持續的上升或下降.(口訣:6升6降)ObservationIndividual Value876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-133I Chart of 7H6H3Prepared byPage 78連續14點交互著一升一降者.(口訣:14升降)ObservationIndividual Value181614121086423210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-14I Chart of 7H7L4Prepared byPage 79ObservationIndividual Value1211109876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-155I Chart of 2/3A3點中有2點在A區或A區以外者.(口訣:3分之2A)Prepared byPage 80ObservationIndividual Value109876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-166I Chart of 4/5B5點中有4點在B區或B區以外者.(口訣:5分之4B)Prepared byPage 81ObservationIndividual Value1614121086423210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-177I Chart of 15C連續15點在中心線上下兩側之C區者.(口訣:15 C)Prepared byPage 82ObservationIndividual Value109876543213210-1-2-3_X=0+3SL=3-3SL=-3+2SL=2-2SL=-2+1SL=1-1SL=-1888I Chart of 8C有8點在中心線之兩側,但C區並無點子者.(口訣:8缺C)Prepared byPage 83開始管制特性確定數據收集資料分析是否穩定SPC目的確定控制圖類型實施改善確定管控時限確定均值及控制限是否穩定作解析圖作控制圖確定管控時限數據收集計劃是否異常實施改善是否到管制時限持續控制過程分析是否穩定結束Y YN NY YY YY YN NY YN NN NY Y6.1. 6.1. 运作流程图运作流程图Prepared byPage 846.2.1. 基本條件: A. 基礎管理比較扎實 B. 生產過程比較穩定 C. 員工應接受過統計技術的系統培訓 D. 具備統計技術應用所需的技術、資源條件6.2.2. 應用條件: A. 控制對象可以是質量特性、質量指標或參數 B. 控制對象應定量描述並具有分布的可重複性6.2.3. 控制對象: A. 重要性: 選擇關鍵項目 B. 單一性: 每個管制圖管控一項目6.2.4. 取樣方法: A. 一定要隨機取樣 B. 按確定的時間間隔取樣 C. 樣本大小應保證管制圖有適宜的檢出力 D. 解析用管制圖取樣組數應大于或等于25組6.2. 6.2. 运作前应考虑的问题运作前应考虑的问题Prepared byPage 856.3.1. 建立解析用管制圖A. 收集數據: 選擇管制特性X, 決定樣本大小n及抽樣間隔, 樣本組數k; A.1. 選擇管制特性X A.1.1. 能量測的產品或制程特性; A.1.2. 與客戶使用及生產關系重大之特性; A.1.3. 與下道制程影響較大之特性; A.1.4. 關鍵制程之特性. A.2. 決定樣本大小n及抽樣間隔 A.2.1 樣本大小n約在25個之間, 不宜太大; A.2.2 同一組之數據應在同一生產條件及短時間內取樣;6.3. 6.3. XbarXbar-R-R管制图运作流程管制图运作流程Prepared byPage 86 A.2.3 初期解析之制程宜在較小的間隔連續取樣, 管制狀態下 之制程可加長其間隔, 對正在生產產品之監視, 可以每班 兩次、每小時一次或其它可行的抽樣頻率. 除客戶要求 及另有規定外, 可參照下表執行: A.2.4 每組樣本可識別日期、時間、機台號、原材料或Lot No. A.3 決定樣本組數k(以保証制程之主要變異有機會出現為原則) 一般以25組以上的樣本及100個以上的數據以檢驗制程之穩 定及估計制程特性的平均值與標準差; 品質特性Cpk管制方法取樣頻率初期制程 1.00檢驗全檢取樣頻率: 1 2小時1.00 1.33管制圖高(1 2小時)1.33 1.67管制圖中(4 8小時)1.67 2.00管制圖低(每班一次)2.00視 情 況 決 定Prepared byPage 87B. 記錄數據及計算各組平均值 及極差Ri, 總平均值 及iXXRnXXiji/minmaxijijiXXRkXXi/kRRi/XX=CLR*A+X=UCL2R*2A-X=LCL管制中心線管制上限管制下限 管制圖管制中心線管制上限管制下限 R管制圖R=CLR*D=UCL4R*D=LCL3C. 計算管制界限Prepared byPage 88公式中D4D3A2為隨樣本數n變化而改變的常數樣本數n2345678910D43.2672.5742.2822.1142.1142.0041.9241.8641.8161.777D3*0.0760.1360.1840.223A21.8801.0230.7290.5770.5770.4830.4190.3730.3370.308A32.6591.9541.6281.4271.2871.1821.0991.0320.975B3*0.0300.1180.1850.2390.284B43.2672.5682.2662.0891.9701.8821.8151.7611.716E22.6601.7721.4571.2901.1841.1091.0541.0100.975Prepared byPage 89D. 繪制管制界限及描點 D.1 決定管制圖之座標尺寸 D.1.1 兩管制圖之座標尺寸分開制訂; D.1.2 中心線置於縱座標之中心位置上; D.1.3 管制上下界限約於座標之2/33/4位置上; D.1.4 決定一格的大小及座標之尺寸. 對於X_bar圖, 座標上之每格刻度值應至少為樣本均值之 最大值與最少值差值的最大值與最少值差值的2 2倍倍; 對於R圖, 應從最低值為0開始到最大值間差值為初始階 段的最大極差最大極差(R)(R)的的2 2倍倍. D.2 依管制界限及各組及極差Ri之大小描繪於管制圖上 D.2.1 中心線以實線描繪, 管制界線以紅色虛線描繪; D.2.2 依各組之統計量大小描點於管制圖上; D.2.3 將各點以實線連接. Prepared byPage 90E. E. 解析制程解析制程 E.1 解析R管制圖 組內樣本間的變異估計值, 決定各組及平均值間的變異 程度, 故R R管制圖的穩定性管制圖的穩定性 須先解析須先解析. . E.1.1 有點超過管制上限有點超過管制上限 I. 管制界限計算錯誤或描點錯誤; II. 組內變異或實際制程變異, 在某時變大或趨勢性變大; III.量測系統曾經變更(如不同的檢驗人員或量具)或量測 系統沒有足夠的分辨率 ; 有點低於管制下限有點低於管制下限 I. 管制界限計算錯誤或描點錯誤; II. 實際制程變小(變好), 應調查後推廣; III. 量測量測系統曾經變更(含數據已被編輯或改變). 一點超出管制界限.Prepared byPage 91連續 7 點遞增或遞減.連續 9 點出現在中心線的同一側.E.1.2 有連續的點出現 有連續9個點出現在中心线的一側或連續6個點上升(或下降) 若連續若連續9 9點出現在上側或連續點出現在上側或連續6 6個點上升個點上升 I. 不規則的原因造成較大的數據變異. 如設備的故障或固定 鬆動, 或單一制程條件的改變, 或使用新的(或不均勻的) 原物料批. 這些問題必須即時糾正; II. 量測系統變更, 如檢驗人員或量測設備變更; 若連續若連續9 9點出現在下側或連續點出現在下側或連續6 6個點下降個點下降 I. 制程條件造成較小的數據變異, 須予調查與分析, 經確認無 特殊原因引起的應推廣; II. 量測系統的變更, 可能掩饰真實的改變.Prepared byPage 92連續 14 點中相鄰點上下交替E.1.3 明顯的非隨機現象(即超過或少於2/3的點集中在中間 的1/3區域內) 連續連續1414點中相鄰點上下交替點中相鄰點上下交替 I. 計算錯誤或描點錯誤; II. 數據分層不夠, 即由兩台加工設備或由兩位操作人員 輪流進行操作而引起的系統效應; III.量測系統的變更, 可能由兩台量測儀器或由兩位量測 人員輪流量測而引起的.Prepared byPage 93E.1.4 發掘並矯正特殊原因 對極差管制圖上顯示的特殊原因, 相關單位應進行分析, 及時採取應對對策, 並給予橫向展開, 防止類似問題再發.E.1.5 再計算管制界限 當進行初始制程解析或重估制程能力時, 管制界限應重新 計算, 以剔除制程在不穩定期間已發掘及矯正的特殊原因, 對管制界限估算的影響. 依E1.1E1.4再次確認R管制圖的 點是否在管制狀態下, 必要時應重新確認、矯正及再計算. 注: 因特殊原因而剔除的數據, 其主要目的是盡量在制程盡量在制程 隻有共同原因存在時估計制程變異隻有共同原因存在時估計制程變異.Prepared byPage 94E.2 解析Xbar管制圖 當R管制圖處於管制狀態下, 組內變異可認為是穩定後,方可 解析Xbar管制圖. 如各組平均值在管制狀態, 可表示制程隻有 普通原因引起的變異; 否則, 表示有特殊原因變異而引起制程 中心不穩定. E.2.1 有點超過管制有點超過管制上下限上下限, , 參照E.1之解析R管制圖; E.2.2 有有连续的点出现连续的点出现, , 參照E.1之解析R管制圖; E.2.3 明显的非随机现象 連續連續1414點中相鄰點上下交替點中相鄰點上下交替, , 參照E.1之解析R管制圖; Prepared byPage 95 連續連續3 3點中有點中有2 2點在同一側的點在同一側的2/32/3區域以外區域以外; ; 連續連續5 5點中有點中有4 4點在同一側的點在同一側的1/31/3區域以外區域以外; ; I. 管制界限錯誤或描點錯誤; II. 制程或抽樣方法因連續的組包含不同變異來源的數據, 如進料混批. 連續5點中有4點落在中間1/3區域外.連續3點中有2點落在中間的2/3區域外.Prepared byPage 96 連續連續1515點在點在1/31/3區域上下區域上下 I.管制界限、計算錯誤或描點錯誤; II. 量測數據可能經過編輯 (極差與均值相差甚遠的幾個樣本數據被 更改或剔除); III.量測系統可能沒有足夠的分辨率. 當上述三種可能被排除且制程能力足夠, 應對該制程加以推廣. 連續連續8 8點在兩側點在兩側, , 但無一在但無一在1/31/3區域內區域內 I. 管制界限、計算錯誤或描點錯誤; II. 制程或抽樣方法有分層, 即每組數據系統性地包含不同的制程平均, 如多線或多機台生產各取一組樣本; III.量測系統的變更, 可能由多台量測儀器或由多位量測人員量測引起. 連續15點在1/3區域內中心線上下.連續8點在中心線兩側,但無一點在1/3區域內.Prepared byPage 97E.3.1 如制程分布範圍在規格界限內, 且中心在規格中心附近, 可認為制程能力能滿足規格要求,可以延長做為管制用 管制圖. E.3 與規格比較規格上限管制上限管制中心值規格值管制下限規格下限X1X1X2X2X3X3X4X4X1X1X1X1X2X2X3X3X4X4X2X2Prepared byPage 98E.3.2 若管制界限之寬度比規格界限之寬度窄, 但由于中心 偏移造成超出上下限時, 宜調整制程平均值至接近or 與規格中心一致, 方可延長做為管制用管制圖界限. X1X2X3X4X1X1X2X3X4X