大数据在教育培训行业的应用(共2292字).doc
-
资源ID:12491293
资源大小:14KB
全文页数:4页
- 资源格式: DOC
下载积分:12金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
大数据在教育培训行业的应用(共2292字).doc
大数据在教育培训行业的应用(共2292字)大数据在教育培训行业的应用 摘要:本文分析了教育培训行业的现状,并针对性地提出了大数据在现阶段教育培训行业中能起的作用及其应用前景。关键词:大数据 教育培训行业 应用一、教育培训行业的现状我国当前的教育培训行业分工越来越明晰,其中包含很多类目,有K12课外辅导类、学前幼儿早教类、语言学习类、职业技能类设计培训类、IT培训类、文艺体育类、学历教育类、管理培训类、留学移民类等等。其中K12课外辅导类主要包含了小学、初中、高中、一对一、班课、夏令营、特长竞赛班、寒暑假冲刺衔接班等若干品类。就K12课外辅导类来说,目前我国的这类教育培训行业已经准备脱离刚开始的粗放、疯狂的发展阶段,教育机构的总的数量已经连续几年呈下降态势,行业实际门槛变高,没有特色、特长的中小机构生存越来越艰难,并逐步退出市场。究其原因,消费者越来越趋于成熟,选择会更理性,中小机构同质化严重,缺乏差异区分度,共同造成了目前的形势,当然这也是行业成长的必经阶段。接下来,我们就大数据在K12课外辅导中一对一的授课形式中的应用略作分析。二、云数据系统在教育培训行业应用的现状就笔者接触的很多选择一对一形式课外辅导的家长来说,一对一的主要优势在于可以做到一人一方案,从章节内容讲解到例题习题练习分析,再到学情考情分析,都能具体问题具体分析,尽力做到因材施教。笔者也了解很多长年从事一对一教学的一线教师,他们为了要实现这种因材施教的模式,除了要有扎实的学科基础之外,还要能对学生的学情考情及性格喜好进行分析,便于有的放矢地个性化讲授。另一方面还要在大量刷题的基础上总结归纳,整理出自己的题库,并对应基础、提高、拔尖等至少三类典型的学生,进行相应的教案编写,并配以循序渐进、深入浅出的例题习题,供学生课上实践与课后巩固、检测。目前一对一教育机构中云数据系统的使用主要体现在题库的统一购买、使用上,解决了一线教师,特别是新教师建题库慢的问题。一线教师可以在授课用的平板电脑中通过在系统的章节题库里勾选课程对应知识点相关的适合难度系数的题目,逐步组成教案或试卷。也能在系统中查看到所选题目的被选用频次,便于进行进一步高要求的筛选。三、大数据运用在当前云数据系统中的实现这类一对一培训机构专用的云数据系统也分为几种模式:1,是类似猿题库和学科网的纯题库,主要提供单向的选题、组卷等功能,直接导出成Word文件。即使能保存教师的选题、组卷数据,也没办法与教师本人各方面的学科情况挂钩,选题、组卷数据难以利用,更难以进行有价值的数据深层挖掘。2,是类似学而思内部云数据系统的带反向数据搜集能力的交互式云题库,这种云系统的一大特点就是封闭性,仅供自己体系内的校区和加盟校区使用,在内部进行数据的更新与完善。3,是类似高思所开发的云数据系统,与学而思系统最大的区别在于开放性。该系统目前已经进行了较有成效的推广,目前仅笔者所了解的浙北和苏南地区,就有很多的中小机构,甚至是上亿规模的较大机构已经购买使用了高思云数据系统。其中,后两类系统中的反向数据搜集功能值得引起注意,在该云数据教学系统中,每位一线教师所做的每一份教案、试卷均被保存在云端服务器上,以至于所有修改必须在该云系统中进行,包括将自己原有题库中的题目加入自己的教案或试卷。因为该类云数据系统的无纸化特性,使得这个反向数据搜集功能可以有效地搜集每位一线老师所做的100%真实的教案及试卷,并且可以跟教师本人的背景、级别挂钩,甚至能跟学生使用该教案的接受情况、使用该试卷的检测反馈挂钩。有了这些全方位的数据,加之每周几千上万的教案和试卷数量,公司可以对这些数据进行聚类形成本公司甚至各地区的行业大数据,其中深藏的正是各章知识点的需求、各校各地区的教学进度、学校以及班级的教学质量统计、各地区统计、行业状况、学生及家长需求、教学方法反馈等大量的信息可供发掘。四、大数据在创新教育培训行业中的前景虽然云数据系统在当前我国的一对一K12教育培训行业中的运用已初显,但系统定位和开放性的竞争还处于百花齐放的阶段,仍远没有决出谁胜谁负。大数据在设置良好的云数据系统中的运用,将极大助力所属机构在市场需求把握、招生策略尝试、教学质量监督、教学方法效果反馈,以及各地区、各学校教学情况跟踪等各个方面。参考文献:1英维克托•迈尔舍恩伯格,英肯尼思•库克耶BigData:AevolutionThatWillTransformHowWeLive,Work,andThinkHoughtonMifflinHarcourt,20132于永昌大数据时代的教育M北京:北京师范大学出版社,20153杨现民互联网+教育:中国基础教育大数据M北京:电子工业出版社,2016第 4 页 共 4 页