2022年中考数学找规律题型汇总及解析.pdf
中考数学找规律题型扩展及解析“有比较才有鉴别”。通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。 找规律的题目, 通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律, 常常包含着事物的序列号。 所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。初中数学考试中,经常出现数列的找规律题,本文就此类题的解题方法进行探索:一、基本方法 看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为: a1+(n-1)b,其中 a 为数列的第一位数, b为增幅, (n-1)b 为第一位数到第 n 位的总增幅。然后再简化代数式a+(n-1)b。例:4、10、16、22、28 ,求第 n 位数。分析:第二位数起,每位数都比前一位数增加6,增幅都是 6,所以,第 n 位数是:4+(n-1) 66n2 (二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列)。如增幅分别为3、5、7、9,说明增幅以同等幅度增加。此种数列第 n 位的数也有一种通用求法。基本思路是: 1、求出数列的第 n-1 位到第 n 位的增幅;2、求出第 1 位到第第 n 位的总增幅;3、数列的第 1 位数加上总增幅即是第n 位数。此解法虽然较烦, 但是此类题的通用解法, 当然此题也可用其它技巧, 或用分析观察的方法求出,方法就简单的多了。(三)增幅不相等,但是增幅同比增加,即增幅为等比数列,如:2、3、5、9,17 增幅为 1、2、4、8. (四)增幅不相等, 且增幅也不以同等幅度增加 (即增幅的增幅也不相等) 。此类题大概没有通用解法, 只用分析观察的方法, 但是,此类题包括第二类的题,如用分析观察法,也有一些技巧。二、基本技巧(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。例如,观察下列各式数: 0,3,8,15,24, 。试按此规律写出的第100个数是10021 ,第 n 个数是n12。解答这一题,可以先找一般规律,然后使用这个规律,计算出第100 个数。我们把有关的量放在一起加以比较:给出的数: 0,3,8,15,24, 。序列号:1,2,3, 4, 5, 。容易发现,已知数的每一项,都等于它的序列号的平方减1。因此,第 n 项是2n-1,第 100 项是21001(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - - - 或 2n、3n 有关。例如: 1,9,25,49,(81),( 121),的第 n 项为(2) 12( n),1,2,3,4,5。,从中可以看出 n=2 时,正好是 22-1 的平方 ,n=3时,正好是 23-1 的平方,以此类推。(三)看例题:A: 2、9、28、65.增幅是 7、19、37.,增幅的增幅是12、18 答案与 3 有关且是 n 的 3 次幂,即:n3+1 B:2、4、8、16.增幅是 2、4、8. .答案与 2 的乘方有关即:n2(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系。再在找出的规律上加上第一位数,恢复到原来。例:2、5、10、17、26 ,同时减去 2 后得到新数列:0、3、8、15、24 ,序列号: 1、2、3、4、5,从顺序号中可以看出当n=1时,得 1*1-1 得 0,当 n=2时,2*2-1 得 3,3*3-1=8,以此类推,得到第n 个数为12n。再看原数列是同时减 2 得到的新数列,则在12n的基础上加2,得到原数列第n 项12n(五)有的可对每位数同时加上, 或乘以,或除以第一位数, 成为新数列,然后,在再找出规律,并恢复到原来。例 : 4,16,36,64,144,196, (第一百个数)同除以 4 后可得新数列: 1、4、9、16 ,很显然是位置数的平方,得到新数列第 n 项即 n2,原数列是同除以 4 得到的新数列,所以求出新数列n 的公式后再乘以 4 即,4 n2,则求出第一百个数为4*1002=40000 (六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3)。当然,同时加、或减的可能性大一些,同时乘、或除的不太常见。(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律。三、基本步骤1、 先看增幅是否相等,如相等,用基本方法(一)解题。2、 如不相等,综合运用技巧(一)、(二)、(三)找规律3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题四、练习题例 1:一道初中数学找规律题0,3,8,15,24, 2,5,10,17,26, 0,6,16,30,48 (1)第一组有什么规律答:从前面的分析可以看出是位置数的平方减一。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 11 页 - - - - - - - - - - (2)第二、三组分别跟第一组有什么关系答:第一组是位置数平方减一,那么第二组每项对应减去第一组每项,从中可以看出都等于 2, 说明第二组的每项都比第一组的每项多2, 则第二组第 n 项是:位置数平方减 1 加 2,得位置数平方加1 即12n。第三组可以看出正好是第一组每项数的2 倍,则第三组第n 项是:122n(3)取每组的第 7 个数,求这三个数的和答:用上述三组数的第n 项公式可以求出,第一组第七个数是7 的平方减一得48,第二组第七个数是7 的平方加一得 50,第三组第七个数是2 乘以括号 7 的平方减一得 96,48+50+96=194 2、观察下面两行数2,4,8,16,32,64, ( 1)5,7,11,19,35,67( 2)根据你发现的规律,取每行第十个数,求得他们的和。(要求写出最后的计算结果和详细解题过程。)解:第一组可以看出是2n,第二组可以看出是第一组的每项都加3,即 2n+3,则第一组第十个数是210=1024,第二组第十个数是210+3 得 1027,两项相加得2051。3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑排列的珠子,前 2002 个中有几个是黑的解:从数列中可以看出规律即:1,1,1,2,1,3,1,4,1,5, .,每二项中后项减前项为0,1,2,3,4,5 ,正好是等差数列,并且数列中偶项位置全部为黑色珠子,因此得出2002 除以 2 得 1001,即前 2002 个中有 1001个是黑色的。4、2213=8 2235=16 2257=24 用含有 N 的代数式表示规律解:被减数是不包含1 的奇数的平方,减数是包括1 的奇数的平方,差是8 的倍数,奇数项第n 个项为 2n-1,而被减数正是比减数多2,则被减数为2n-1+2,得 2n+1,则用含有 n 的代数式表示为:221212nn=8n。写出两个连续自然数的平方差为888 的等式解:通过上述代数式得出,平方差为888 即 8n=8X111,得出 n=111,代入公式:(222+1)2-(222-1)2=888 五、对于数表1、先看行的规律,然后,以列为单位用数列找规律方法找规律2、看看有没有一个数是上面两数或下面两数的和或差六、数字推理基本类型按数字之间的关系,可将数字推理题分为以下几种类型:1.和差关系。又分为等差、移动求和或差两种。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 11 页 - - - - - - - - - - (1)等差关系。12,20,30,42,( 56 ) 127,112,97,82,( 67 ) 3,4,7,12,( 19 ),28 (2)移动求和或差。从第三项起,每一项都是前两项之和或差。1,2,3,5,( 8 ),13 选 C。1 +2=3 ,2+ 3=5,3+ 5=8,5+ 8=13 0,1,1,2,4,7,13,( 24) 选 C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。5,3,2,1,1,(0 ) 选 C。前两项相减得到第三项。2.乘除关系。又分为等比、移动求积或商两种(1)等比,从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。8,12,18,27,后项与前项之比为。6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1, 2,3 (2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。2,5,10,50,(500) 100,50,2,25,(2/25) 3,4,6,12,36,(216) 从第三项起,第三项为前两项之积除以2 1,7,8,57,(457)第三项为前两项之积加1 3.平方关系1,4,9,16,25,(36),49 为位置数的平方。66,83,102,123,(146) ,看数很大,其实是不难的,66 可以看作 64+2,83 可以看作 81+2,102 可以看作 100+2,123 可以看作 121+2,以此类推,可以看出是 8,9,10,11,12 的平方加 2 4.立方关系1,8,27,(81),125 位置数的立方。3,10,29,(83),127位置数的立方加2 0,1,2,9,(730)后项为前项的立方加1 5.分数数列。关键是把分子和分母看作两个不同的数列,有的还需进行简单的通分, 则可得出答案213449516625(736)分子为等比即位置数的平方,分母为等差数列,则第 n 项代数式为:21nn2/3 1/2 2/5 1/3(1/4)将 1/2 化为 2/4,1/3 化为 2/6,可得到如下数列:2/3, 2/4, 2/5, 2/6, 2/7, 2/8 .可知下一个为 2/9,如果求第 n 项代数式即:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 11 页 - - - - - - - - - - 22n,分解后得:21nn6.、质数数列2,3,5,(7),11 质数数列4,6,10,14,22,(26) 每项除以 2 得到质数数列20,22,25,30,37,(48) 后项与前项相减得质数数列。7.、双重数列。又分为三种:(1)每两项为一组,如1,3,3,9,5,15,7,(21)第一与第二,第三与第四等每两项后项与前项之比为 3 2,5,7,10,9,12,10,(13)每两项中后项减前项之差为3 1/7,14,1/21,42,1/36 ,72,1/52,(104 )两项为一组,每组的后项等于前项倒数 *2 (2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。22,39,25,38,31,37,40,36,(52) 由两个数列, 22,25,31,40,( )和 39,38,37,36 组成,相互隔开,均为等差。34,36,35,35,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减(3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。, , ,整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过 7 个时,为双重数列的可能性相当大。8.、组合数列。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。 需要熟悉前面的几种关系后,才能较好较快地解决这类题。1,1,3,7,17,41,( 99 ) 选 B。此为移动求和与乘除关系组合。第三项为第二项*2 加第一项,即1X2+1=3 、3X2+1=7 ,7X2+3=17,17X2+7=41 ,则空中应为 41X2+17=99 65,35,17,3,( 1 ) 选 A。平方关系与和差关系组合,分别为8 的平方加 1,6 的平方减 1,4的平方加 1,2 的平方减 1,下一个应为 0 的平方加 1=1 4,6,10,18,34,( 66 ) 选 C。各差关系与等比关系组合。依次相减,得2,4,8,16( ),可推知下一个为 32,32 +34=66 6,15,35,77,( ) 选 D。 此题看似比较复杂, 是等差与等比组合数列。 如果拆分开来可以看出,6=2X3、15=3x5、35=7X5、77=11X7,正好是质数2 、3,5,7、11 数列的后项精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 11 页 - - - - - - - - - - 乘以前项的结果,得出下一个应为13X11=143 2,8,24,64,( 160 ) 选 A。此题较复杂,幂数列与等差数列组合。2=1X21的 1 次方, 8=2X22的平方, 24=3*X23,64=4X24,下一个则为 5X25=160 0,6,24,60,120,( 210 ) 选 B。和差与立方关系组合。0=1 的 3 次方-1,6=2 的 3 次方-2,24=3 的 3次方-3,60=4 的 3 次方-4,120=5的 3 次方-5。空中应是 6 的 3 次方-6=210 1,4,8,14,24,42,(76 ) B .66 选 A。两个等差与一个等比数列组合依次相减,原数列后项减前项得3,4,6,10,18,( 34 ),得到新数列后,再相减,得1,2,4,8,16,( 32 ),此为等比数列,下一个为32,倒推到 3,4,6,8,10,34,再倒推至 1,4,8,14,24,42,76,可知选 A。9.、其他数列。2,6,12,20,( 30 ) 选 C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为 5*6=30 1,1,2,6,24,( 120 ) 选 C 。后项 =前项 X 递增数列。 1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*51,4,8,13,16,20,( 25 ) 选 B。每 4 项为一重复,后期减前项依次相减得3,4,5。下个重复也为 3,4,5,推知得 25。27,16,5,( 0 ),1/7 选 B。依次为 3 的 3 次方, 4 的 2 次方, 5 的 1 次方, 6 的 0 次方, 7 的-1次方。四、解题方法数字推理题难度较大, 但并非无规律可循, 了解和掌握一定的方法和技巧对解答数字推理问题大有帮助。1.快速扫描已给出的几个数字,仔细观察和分析各数之间的关系,尤其是前三个数之间的关系, 大胆提出假设, 并迅速将这种假设延伸到下面的数,如果能得到验证,即说明找出规律,问题即迎刃而解;如果假设被否定,立即改变思考角度,提出另外一种假设,直到找出规律为止。2.推导规律时往往需要简单计算,为节省时间,要尽量多用心算,少用笔算或不用笔算。3.空缺项在最后的,从前往后推导规律;空缺项在最前面的,则从后往前寻找规律;空缺项在中间的可以两边同时推导。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 11 页 - - - - - - - - - - (一)等差数列相邻数之间的差值相等, 整个数字序列依次递增或递减。 等差数列是数字推理测验中排列数字的常见规律之一。它还包括了几种最基本、 最常见的数字排列方式:自然数数列: 1,2,3,4,5,6偶数数列: 2,4,6,8,10,12奇数数列: 1,3,5,7,9,11,13例题 1 :103,81,59,( 37 ),15。解析:答案为 C。这显然是一个等差数列,前后项的差为22。例题 2:2,5,8,( 11 )。解析:从题中的前3 个数字可以看出这是一个典型的等差数列,即后面的数字与前面数字之间的差等于一个常数。题中第二个数字为5,第一个数字为 2,两者的差为 3,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即8 +3=11,第四项应该是11,即答案为 B。例题 3:123,456,789,( 1122 )。解析:答案为 A。这题的第一项为123,第二项为 456,第三项为 789,三项 中相 邻两 项的 差都是333, 所 以是 一 个等 差 数列 ,未 知项 应该 是 789 +333=1122 。注意,解答数字推理题时,应着眼于探寻数列中各数字间的内在规律,而不能从数字表面上去找规律,比如本题从123,456,789 这一排列,便选择 101112,肯定不对。例题 4: 11,17,23,( 29 ),35。解析:答案为 C。这同样是一个等差数列,前项与后项相差6。例题 5: 12,15,18,( 21 ),24,27。解析:答案为 B。这是一个典型的等差数列,题中相邻两数之差均为3,未知项即 18+ 3=21,或 24-3=21,由此可知第四项应该是21。(二)等比数列相邻数之间的比值相等,整个数字序列依次递增或递减。等比数列在数字推理测验中,也是排列数字的常见规律之一。例题 1: 2,1,1/2,( B )。4 8 解析:从题中的前3 个数字可以看出这是一个典型的等比数列,即后面的数字与前面数字之间的比值等于一个常数。题中第二个数字为1,第一个数字为2,两者的比值为1/2,由观察得知第三个、第二个数字也满足此规律,那么在此基础上对未知的一项进行推理,即(1/2)/2 ,第四项应该是1/4,即答案为 B。例题 2: 2,8,32,128,( 512 )。解析:答案为 C。这是一个等比数列,后一项与前一项的比值为4。例题 3: 2,-4,8,-16,( 32 )。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 11 页 - - - - - - - - - - 解析:答案为 A。这仍然是一个等比数列,前后项的比值为-2。(三)平方数列1、完全平方数列:正序: 1,4,9,16,25 逆序: 100,81,64,49,36 2、一个数的平方是第二个数。1)直接得出: 2,4,16,( 256 ) 解析:前一个数的平方等于第二个数,答案为256。2)一个数的平方加减一个数等于第二个数:1,2,5,26,(677) 前一个数的平方加1 等于第二个数,答案为677。3、隐含完全平方数列:1)通过加减一个常数归成完全平方数列:0,3,8,15,24,( 35 ) 前一个数加 1 分别得到 1,4,9,16,25,分别为 1,2,3,4,5 的平方,答案 35 2)相隔加减,得到一个平方数列:例:65,35,17,( 3 ),1 解析:不难感觉到隐含一个平方数列。进一步思考发现规律是:65 等于 8的平方加 1,35 等于 6 的平方减 1,17 等于 4 的平方加 1,再观察时发现:奇位置数时都是加 1,偶位置数时都是减1,所以下一个数应该是2 的平方减 1 等于3,答案是 D。例:1,4,16,49,121,( 169 )。(2005 年考题 ) 解析:从数字中可以看出1 的平方, 2 的平方,4 的平方,7 的平方,11 的平方,正好是 1, 2, 4, 7, 11.。 。 。 。 , 可以看出后项减前项正好是1, 2, 3, 4, 5, 。 。 。 。 。 。 。 ,从中可以看出应为11+5=16,16 的平方是 256,所以选 A。例:2,3,10,15,26,( 35 )。(2005 年考题 ) 解析:看数列为2=1 的平方 +1,3=2 的平方减 1,10=3 的平方加 1,15=4的平方减 1,26=5的平方加 1,再观察时发现:位置数奇时都是加1,位置数偶时都是减 1, 因而下一个数应该是6 的平方减 1=35, 前 n 项代数式为:nn)1(2所以答案是。(四)立方数列立方数列与平方数列类似。例题 1: 1,8,27,64,( 125 ) 解析:数列中前四项为1,2,3,4 的立方,显然答案为5 的立方,为 125。例题 2:0,7,26,63 ,( 124 ) 解析:前四项分别为 1,2,3,4 的立方减 1,答案为 5 的立方减 1,为 124。例 3: -2,-8,0,64,( )。(2006年考题 ) D 250 解析:从数列中可以看出,-2,-8, 0,64 都是某一个数的立方关系,-2=(1-3)13,-8=(2-3)X23,0=(3-3)X33,64=(4-3)X43,前 n 项代数式为:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 11 页 - - - - - - - - - - 33nn,因此最后一项因该为 (5-3) 53250 选 D 例 4:0,9,26,65,124,( 239 )(2007 年考题 ) 解析:前五项分别为1,2,3,4,5 的立方加 1 或者减 1,规律为位置数是偶数的加 1,则奇数减 1。即:前 n 项=n3+ (-1)n。答案为 239。在近几年的考试中,也出现了n 次幂的形式例 5:1,32,81,64,25,( 6 ),1。(2006 年考题 ) 解析:逐项拆解容易发现1=16,32=25,81=34,64=43,25=52,则答案已经很明显了, 6 的 1 次幂,即 6 选 B。(五)、加法数列数列中前两个数的和等于后面第三个数:n1+n2=n3例题 1: 1,1,2,3,5,( 8 )。A8 B7 C9 D10 解析:第一项与第二项之和等于第三项,第二项与第三项之和等于第四项,第三项与第四项之和等于第五项,按此规律3 +5=8答案为 A。例题 2: 4,5,( 9 ),14,23,37 A 6 B 7 C 8 D 9 解析:与例一相同答案为D 例题 3: 22,35,56,90,( 145 ) 99 年考题A 162 B 156 C 148 D 145 解析: 22 +35-1=56 , 35+ 56-1=90 ,56+ 90-1=145,答案为 D (六)、减法数列前两个数的差等于后面第三个数:n1-n2=n3 例题 1:6,3,3,( 0 ),3,-3 A 0 B 1 C 2 D 3 解析: 6-3=3,3-3=0 ,3-0=3 ,0-3=-3答案是 A。(提醒您别忘了: “ 空缺项在中间,从两边找规律 ”)(七)、乘法数列1、前两个数的乘积等于第三个数例题 1:1,2,2,4,8,32,( 256 ) 前两个数的乘积等于第三个数,答案是256。例题 2:2,12,36,80,( ) (2007 年考题 ) 解析: 21 , 34 ,49 ,516 自然下一项应该为625 150 选 C,此题还可以变形为:212,322,432,245 .,以此类推,得出)1(2nn2、两数相乘的积呈现规律:等差,等比,平方等数列。例题 2:3/2, 2/3, 3/4,1/3,3/8 ( A ) (99 年海关考题 ) A 1/6 B 2/9 C 4/3 D 4/9 解析: 3/22/3=1 2/3 3/4=1/2 3/41/3=1/4 1/33/8=1/8 3/8=1/16 答案是A。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 11 页 - - - - - - - - - - (八)、除法数列与乘法数列相类似,一般也分为如下两种形式:1、两数相除等于第三数。2、两数相除的商呈现规律:顺序,等差,等比,平方等。(九)、质数数列由质数从小到大的排列: 2,3,5,7,11,13,17,19(十)、循环数列几个数按一定的次序循环出现的数列。例:3,4,5,3,4,5,3,4,5,3,4 以上数列只是一些常用的基本数列, 考题中的数列是在以上数列基础之上构造而成的,下面我们主要分析以下近几年考题中经常出现的几种数列形式。1、二级数列这里所谓的二级数列是指数列中前后两个数的和、差、积或商构成一个我们熟悉的某种数列形式。例 1:2 6 12 20 30 ( 42 )(2002年考题 ) 解析:后一个数与前个数的差分别为:4,6,8,10 这显然是一个等差数列,因而要选的答案与30 的差应该是 12,所以答案应该是B。例 2:20 22 25 30 37 ( ) (2002年考题 ) 解析:后一个数与前一个数的差分别为:2,3,5,7 这是一个质数数列,因而要选的答案与37 的差应该是 11,所以答案应该是C。例 3:2 5 11 20 32 ( 47 ) (2002年考题 ) 解析:后一个数与前一个数的差分别为:3,6,9,12 这显然是一个等差数列,因而要选的答案与 32 的差应该是 15,所以答案应该是C。例 4:4 5 7 1l 19 ( 35 ) (2002 年考题) 解析:后一个数与前一个数的差分别为:1,2,4,8 这是一个等比数列,因而要 选的答案与 19 的差应该是 16,所以答案应该是C 。例 5:3 4 7 16 ( 43 ) (2002 年考题 ) 解析:后一个数与前一个数的差分别为:1,3,9 这显然也是一个等比数列,因而要选的答案与16 的差应该是 27,所以答案应该是D。例 6:32 27 23 20 18 ( 17 ) (2002 年考题) 解析:后一个数与前一个数的差分别为:-5,-4,-3,-2 这显然是一个等差数列,因而要选的答案与 18 的差应该是 -1,所以答案应该是D。例 7:1, 4, 8, 13, 16, 20, ( 25 ) (2003年考题 ) 解析:后一个数与前一个数的差分别为:3,4,5,3,4 这是一个循环数列,因而要 选的答案与 20 的差应该是 5,所以答案应该是B。例 8:1, 3, 7, 15, 31, ( 63 ) (2003 年考题 ) 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 11 页 - - - - - - - - - - 解析:后一个数与前一个数的差分别为:2,4,8,16 这显然是一个等比数列,因而要选的答案与 31 的差应该是 32,所以答案应该是C。例 9:( 69 ),36,19,10,5,2(2003 年考题 ) 解析:前一个数与后一个数的差分别为:3,5,9,17 这个数列中前一个数的 2 倍减 1 得后一个数,后面的数应该是17*2-1=33,因而 33+36=69答案应该是 B。例 10:1,2,6,15,31,( 56 ) (2003年考题 ) 解析:后一个数与前一个数的差分别为:1,4,9,16 这显然是一个完全平方数列,因而要选的答案与31 的差应该是 25,所以答案应该是B。例 11:1,3,18,216,( 5184 ) 解析:后一个数与前一个数的比值分别为:3,6,12 这显然是一个等比数列,因而要选的答案与216 的比值应该是 24,所以答案应该是D:216*24=5184。例 12: -2 1 7 16 ( 28 ) 43 解析:后一个数与前一个数的差值分别为:3,6,9 这显然是一个等差数列,因而要选的答案与16 的差值应该是 12,所以答案应该是B。例 13:1 3 6 10 15 ( ) 解析:相邻两个数的和构成一个完全平方数列,即:1+3=4=2 的平方,6+10=16=4的平方,则 15+=36=6的平方呢,答案应该是B。例 14:102,96,108,84,132,( 36 ) ,(228)(2006年考 )解析:后项减前项分别得-6,12,-24,48,是一个等比数列,则48 后面的数应为-96,132-96=36,再看 -96 后面应是 96X2=192 ,192+36=228 。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 11 页 - - - - - - - - - -