2022年人教版数学直线与方程知识点专题讲义 .pdf
必修二直线与方程专题讲义1、直线的倾斜角与斜率(1)直线的倾斜角关于倾斜角的概念要抓住三点:. 与 x 轴相交 ; . x 轴正向 ; . 直线向上方向 . 直线与 x 轴平行或重合时, 规定它的倾斜角为00. 倾斜角的范围000180. 090 ,tan0k;90180 ,tan0k(2)直线的斜率直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. 经过两点),(),(222111yxPyxP的直线的斜率公式是211221()yykxxxx. 每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式名称方程的形式已知条件局限性点斜式)(11xxkyy),(11yx为直线上一定点,k为斜率不包括垂直于x 轴的直线斜截式bkxyk为斜率,b是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121xxxxyyyy),(2121yyxx其中),(),(2211yxyx是直线上两定点不包括垂直于x 轴和y 轴的直线精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 6 页 - - - - - - - - - - 截距式1byaxa是直线在 x 轴上的非零截距,b是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式0CByAx)不同时为其中0,(BAA,B,C为系数无限制,可表示任何位置的直线注:过两点),(),(222111yxPyxP的直线是否一定可用两点式方程表示?(不一定)(1)若2121yyxx且,直线垂直于x 轴,方程为1xx;(2)若2121yyxx且,直线垂直于y 轴,方程为1yy;(3)若2121yyxx且,直线方程可用两点式表示)3、两条直线平行与垂直的判定(1)两条直线平行斜截式: 对于两条不重合的直线111222:,:lyk xb lyk xb,则有121212/ /,llkkbb注:当直线12,l l的斜率都不存在时,12ll与的关系为平行 . 一般式: 已知1111:0lA xB yC, 2222:0lA xB yC,则1212211221/ /,llA BA BACA C注:1212211221=,llA BA BACA C与重合1l 与2l 相交01221BABA(2)两条直线垂直斜截式: 如果两条直线12,ll斜率存在,设为12,k k,则12121llk kg注:两条直线12,l l垂直的充要条件是斜率之积为-1 ,这句话不正确;由两直线的斜率之积为 -1 ,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1. 如果12,ll中有一条直线的斜率不存在,另一条直线的斜率为0 时,12ll与互相垂直 .精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 6 页 - - - - - - - - - - 一般式: 已知1111:0lA xB yC, 2222:0lA xB yC,则0212121BBAAll4、线段的中点坐标公式若两点),(),(222111yxPyxP, 且线段21, PP的中点M的坐标为),(yx, 则222121yyyxxx5、 直线系方程(1)过定点的直线系斜率为k且过定点),(00yx的直线系方程为)(00 xxkyy过两条直线0:1111CyBxAl, 0:2222CyBxAl的交点的直线系方程为0)(222111CyBxACyBxA(为参数),其中直线l2不在直线系中(2)平行垂直直线系平行于已知直线0AxByC的直线系10AxByC垂直于已知直线0AxByC的直线系10BxAyC6、两条直线的交点设两条直线的方程是0:1111CyBxAl, 0:2222CyBxAl两条直线的交点坐标就是方程组00222111CyBxACyBxA的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离(1)两点间的距离平面上的两点),(),(222111yxPyxP间的距离公式21221221)()(yyxxPP特别地,原点)0 ,0(O与任一点),(yxP的距离22yxOP(2)点到直线的距离精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 6 页 - - - - - - - - - - 点),(00yxP到直线0:CByAxl的距离2200BACByAxd(3)两条平行线间的距离两条平行线0:11CByAxl, 0:22CByAxl间的距离2212BACCd注:求点到直线的距离时,直线方程要化为一般式;求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算 . 8、有关对称问题(1)中心对称若点),(11yxM及),(22yxN关于),(baP对称,则由中点坐标公式得1122ybyxax直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21/ ll,由点斜式得到所求直线方程. (2)轴对称点关于直线的对称若两点),(111yxP与),(222yxP关于直线0:CByAxl对称,则线段21PP的中点在对称轴l上,而且连接21PP的直线垂直于对称轴l上,由方程组?1)(0)2()2(12122121BAxxyyCyyBxxA22yx?可得到点1P关于l对称的点2P的坐标),(22yx(其中21,0 xxA)直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行. 注:曲线、直线关于一直线bxy对称的解法:y换x,x换y.例:曲线精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 6 页 - - - - - - - - - - 0),(yxf关于直线2xy对称曲线方程是0)2,2(xyf曲线0),(:yxfC关于点),(ba的对称曲线方程是0)2,2(ybxaf9、直线l上一动点 P到两个定点A、B 的距离“最值问题” :(1)在直线l上求一点P,使PBPA取得最小值,若点BA、位于直线l的同侧时,作点A(或点B)关于l的对称点/A或/B, .)(/即为所求点,则点于交或连接PPlABBA若点BA、位于直线的异侧时,连接AB交于l点P,则P为所求点 . 可简记为“同侧对称异侧连”. 即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可. (2)在直线l上求一点P使PBPA取得最大值,方法与( 1)恰好相反,即“异侧对称同侧连”若点BA、位于直线l的同侧时,连接AB交于l点P,则P为所求点 . 若点BA、位于直线的异侧时,作点A(或点B)关于l的对称点/A或/B, .)(/即为所求点,则点于交或连接PPlABBA(3) 22PBPA的最值:函数思想“转换成一元二次函数,找对称轴”. 10、直线过定点问题(1)含有一个未知参数,12)1(axay1)2(xxay(1)令202xx,将3) 1(2yx式,得代入,从而该直线过定点)3,2((2)含有两个未知参数0)2()3(nynmxnm0)12()3(yxnyxm令1203yxyx7371yx,从而该直线必过定点)73,71(. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 6 页 - - - - - - - - - - 文档编码:KDHSIBDSUFVBSUDHSIDHSIBF-SDSD587FCDCVDCJUH 欢迎下载 精美文档欢迎下载 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 6 页 - - - - - - - - - -