欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    八年级数学上册 知识点总结 人教新课标版.doc

    • 资源ID:12628705       资源大小:26KB        全文页数:15页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    八年级数学上册 知识点总结 人教新课标版.doc

    八年级数学上册 知识点总结 人教新课标版八年级数学上册 知识点总结 人教新课标版优思数学-新人教版初中数学专题网站初二数学上册知识点总结1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等25边边边公理(SSS)有三边对应相等的两个三角形全等26斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形1优思数学网系列资料版权所有优思数学网优思数学-新人教版初中数学专题网站43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1因式分解时,各项如果有公因式应先提公因式,再进一步分解。2因式分解,必须进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是这两个数的积的两倍。(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。2优思数学网系列资料版权所有优思数学网优思数学-新人教版初中数学专题网站(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能情况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分4.分式约分中注意正确运用乘方的符号法则,如x-y-(y-x),(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简单的分式之分子分母可直接乘方6注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变3一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备3优思数学网系列资料版权所有优思数学网优思数学-新人教版初中数学专题网站4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最后结果,如果是分式则应该是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。4优思数学网系列资料版权所有优思数学网扩展阅读:八年级数学上册 知识点总结 人教新课标版初二数学上册知识点总结1过两点有且只有一条直线2两点之间线段最短3456同角或等角的补角相等同角或等角的余角相等过一点有且只有一条直线和已知直线垂直直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于180°18推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等2324252628293031角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等边边边公理(SSS)有三边对应相等的两个三角形全等斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等定理2到一个角的两边的距离相同的点,在这个角的平分线上角的平分线是到角的两边距离相等的所有点的集合等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)推论1等腰三角形顶角的平分线平分底边并且垂直于底边27定理1在角的平分线上的点到这个角的两边的距离相等32等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于60°34等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60°的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。(二)平方差公式1平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。(三)因式分解1因式分解时,各项如果有公因式应先提公因式,再进一步分解。2因式分解,必须进行到每一个多项式因式不能再分解为止。(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。上面两个公式叫完全平方公式。(2)完全平方式的形式和特点项数:三项有两项是两个数的的平方和,这两项的符号相同。有一项是这两个数的积的两倍。(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。(五)分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式原式=(am+an)+(bm+bn)a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am+an)+(bm+bn)a(m+n)+b(m+n)(m+n)(a+b)这种利用分组来分解因式的方法叫做分组分解法从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数2将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:列出常数项分解成两个因数的积各种可能情况;尝试其中的哪两个因数的和恰好等于一次项系数3将原多项式分解成(x+q)(x+p)的形式(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分2.分式进行约分的目的是要把这个分式化为最简分式3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分4.分式约分中注意正确运用乘方的符号法则,如x-y-(y-x),(x-y)2(y-x)2,(x-y)3-(y-x)35分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理当然,简单的分式之分子分母可直接乘方6注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减(八)分数的加减法1通分与约分虽都是针对分式而言,但却是两种相反的变形约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来2通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变3一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备4通分的依据:分式的基本性质5通分的关键:确定几个分式的公分母通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分7同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。8异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减9同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号10对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分11异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化12作为最后结果,如果是分式则应该是最简分式(九)含有字母系数的一元一次方程1含有字母系数的一元一次方程引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a0)在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。第 15 页 共 15 页

    注意事项

    本文(八年级数学上册 知识点总结 人教新课标版.doc)为本站会员(一***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开