欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    计量经济学普通最小二乘法假设检验.pptx

    • 资源ID:12717957       资源大小:391.33KB        全文页数:45页
    • 资源格式: PPTX        下载积分:30金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要30金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    计量经济学普通最小二乘法假设检验.pptx

    3 普通最小二乘法假设检验普通最小二乘法假设检验zsq.zjgsu模型检验内容模型检验内容经济意义的检验统计检验统计检验计量经济学检验预测检验本节主要讲述统计检验的内容方程显著性检验及变量显著性检验方程显著性检验及变量显著性检验zsq.zjgsu必要的数理统计知识必要的数理统计知识(1)22()22212222212211.:( ,),22.:,(0,1)( )3.:(0,1),( ), ( )/xiidnnnormal distribution zNedistribution z zzNUzzznt distibution ZNUnZ U independentZtt nUn 密度函数为zsq.zjgsu必要的数理统计知识必要的数理统计知识(2)22222122224.:( ),( ),/( , )/15.,( ,),1(1)(1)6.iidniF distibution Um Vn U V independentUmFF m nVnx xxNSxnnSn 正态分布的线性组合仍然服从正态分布zsq.zjgsu经典线性模型假定经典线性模型假定对于模型 ,利用OLS有:在高斯-马尔科夫假定下,OLS估计量的抽样分布完全取决于误差项的分布。01iiiyx112()()iiixxxxzsq.zjgsu假设假设7 7:服从正态分布服从正态分布仅仅参数估计(点估计),假设仅仅参数估计(点估计),假设1-61-6足矣足矣。要进行假设检验,就必须对的概率分布作出假定。假设误差项服从正态分布的合理性在于,误差项是由很多因素构成的,当这些因素是独立同分布时,依照中心极限定理,那么这些因素之和应该近似服从正态分布。除少数情形(如Cauchy分布)外,随着样本容量的增加,该假设都会得到满足。服从以上所有假设条件(1-7)的线性回归模型称为CNLRM(经典正态线性回归模型经典正态线性回归模型 ).),0(2Ni经典线性模型假定经典线性模型假定zsq.zjgsu考虑x非随机这种简单情况,显然,当样本容量很大时,只要误差项是独立同分布的(并不需要要假定误差项服从正态分布),那么根据中心极限定理, 应该近似服从正态分布。当然,为了保证误差项的独立性,抽样的随机性十分关键。111221()()1()()iiiiiiNxxNxxxxxx1zsq.zjgsu假定 是真实模型,当然我们并不知道各参数的真实值是多少。在经典线性模型假定下, 或者z= 其中01iiiyx1121(,)N 111()/()(0,1)sdN211222()()isdxxzsq.zjgsu练习练习:确定 的分布。0zsq.zjgsu某一经济经济理论预言1w 。如果你手中掌握一组样本,一个问题是,你所掌握的样本支持这个预言吗?现在来考察标准正态分布。在该分布上,存在对称的两点: 与 ,其中:如果把概率为5%的事件称为小概率事件,那么,当Z 的取值大于 或者小于 时,我们认为小概率事件发生了! 0.025z0.025z0.0250.025Pr()Pr()0.025ZzZz 0.025z0.025z利用标准正态分布作假设检验利用标准正态分布作假设检验zsq.zjgsu假设检验思想假设检验思想假设检验的基本思想是概率性质的反证法概率性质的反证法。为检验原假设是否成立,先假设其正确,看由此能否推出什么结果。若导致一个不合理的结果,则拒绝原假设;若没有导致不合理现象的出现,则不能拒绝原假设。概率性质的反证法概率性质的反证法的依据是“小概率事件原理小概率事件原理”:小概率事件在一次试验中几乎不可能发生。由原假设下构造的一个事件,在原假设正确的前提下是一个小概率事件。zsq.zjgsu假设检验的正式步骤(1)建立原假设与备择假设:原假设与备择假设互斥;假设体系应该是完备的,即原假设与原假设与备择假设互斥;假设体系应该是完备的,即原假设与备择假设两者之一必为真,但两者不能同时为真。备择假设两者之一必为真,但两者不能同时为真。(2)确定小概率标准a。经常我们把经常我们把1%、5%或者或者10%作为小概率标准。对作为小概率标准。对a更加正式的更加正式的称呼是称呼是“显著水平显著水平”。(3)考察统计量值 是否落在拒绝域: 之内.如果落在上述区间之内,那么在a显著水平上,我们拒绝原假设,接受备择假设;反之,我们不拒绝不拒绝原假设,拒绝备择假设。0111:HH11()/()sd/2/2(,)aazz zsq.zjgsu利用标准正态分布作假设检验利用标准正态分布作假设检验双侧检验如果拒绝域是单侧检验如果假设体系是:那么在显著水平a下,拒绝域应该是 /2/2(,)aazz 0111:HH,)az zsq.zjgsu问题问题1:为何要设置这样的假设体系?:为何要设置这样的假设体系?答案:这依赖于先验的理论与判断。例如,假定 是某正常商品的消费收入弹性,那么 不可能为负。我们可以通过建立如下的假设体系: 并基于样本来判断 是否为真。问题问题2:为什么:为什么 并不是拒绝域?并不是拒绝域?问题问题3:为什么拒绝域是:为什么拒绝域是 ?110111:0:0HH10/2,)az ,)az zsq.zjgsu思考题:在假设体系: 下,计量软件包计算出为正的统计量值z,而且P值为0.120【注:计量软件包默认的P值是双尾的概率,当z为正时,它计算的是 】。 在假设体系 下,以10%为显著水平,我们是否拒绝原假设?0111:HHPr()ZzZz 0111:HHzsq.zjgsut检验检验 中, 常常是未知的,就不能利用正态分布进行假设检验。 定义 标准误标准误 111()/()(0,1)sdN22112()()ixxsd22211iRSSNkNk/221()()ixxsezsq.zjgsu注意!注意!标准误与标准差之间的差别标准误与标准差之间的差别1. 标准误(Standard error)是标准差(Standard deviation)的估计量(值)。2.标准差是常数,当样本可变时,标准误为随机变量。zsq.zjgsu2111112222()/()()/(0,1)() /2)iisdNxxN (2112112222222)()()()/2()2iiiit NxxNxxN(111()/()2)set N(t检验检验 zsq.zjgsu假设检验的正式步骤(1)建立原假设与备择假设:(2)确定小概率标准a 。(3)考察统计量值 是否落在拒绝域: 之内.如果落在上述区间之内,那么在a显著水平上,我们拒绝原假设,接受备择假设;反之,我们不拒不拒绝绝原假设,拒绝备择假设。0111:HH/2/2(,(2)(2),)aatntn 11()/()sezsq.zjgsu前面我们讨论的是简单线性回归模型。事实上相关结论与检验完全可以被推广到多元线性回归模型:在该模型下,.01 1jjk kyxxx 1()/()jjjN kset zsq.zjgsu在实践中在实践中,我们经常对 是否为零的假设感兴趣,显然在假设体系: 下,此时的t统计量是如果原假设被拒绝,那么我们就说在某某显著水平上x是统计上显著的;如果不能被拒绝,则就说x在某某显著水平上是统计上不显著的。应该注意:即使的绝对值很小很小(即所谓的变量应该注意:即使的绝对值很小很小(即所谓的变量x无经济无经济显著性或者实际显著性(显著性或者实际显著性(economic significance/practical significance),但在统计上,),但在统计上,它可能显著地与它可能显著地与0不同。不同。0111:0:0HH11/()se1zsq.zjgsu思考题:样本容量为30,建立回归模型: 等于-2.3,请判断在显著水平1%、5%与10%下是否拒绝原假设。01 12 23 3iiiiiyxxx1tzsq.zjgsu置信区间置信区间在 模型下,有: 则有: 被称为 的区间估计量,而1-a是置信水平。 /()N1)111set-k- (11111/2/2Pr()() 1aatsetsea 1/211/21(),()aatsetse101 12 23 3iiiiiyxxxzsq.zjgsu区间预测 假定真实模型是: ,模型满足经典线性模型假定。以作为对yf的预测。此时预测误差是:显然,E(e1)=0,e1服从正态分布。即因此,对yf的区间预测是:01yx10011()()ffffeyyx2212)( )1(1()fiVar exxNxx111111( )(0,1)( )( )( )ffyyeE eeNSd eSd eSd e/2/21Pr()1( )ffaayyobzzaSd e /21/21( ),( )afafzSd eyzSd eyzsq.zjgsu经常需要对 进行估计。换句话说,我们不知Sd(e1),但我们可以获得对它的估计Se(e1)。 因此,在置信水平a下,对的区间预测是:2 22112)Se1,1(1()NiifieNkxxNxx1(0,1)( )ffyyNSd e2221 /1)NiiNk(11221)()/( )()1( )(/)/1ffffNiiyySd eyyt NkSe eNk(/21/21( ),( )afaftSe eytSe ey区间预测 zsq.zjgsu练习请给出E(yf)的区间预测。zsq.zjgsu区间预测 假定真实模型是: ,模型满足经典线性模型假定。以作为对yf的预测。此时预测误差是:显然,E(e1)=0,e2服从正态分布。即因此,对yf的区间预测是:01yx20011()()fffeyyx2222)()(1()fiVar exxNxx222222()()(0,1)()()()ffE yyeE eeNSd eSd eSd e/2/22()Pr()1()ffaaE yyobzzaSd e /22/22(),()afafzSd eyzSd eyzsq.zjgsu经常需要对 进行估计。换句话说,我们不知Sd(e2),但我们可以获得对它的估计Se(e2)。 因此,在置信水平a下,对的区间预测是:222122)Se,1(1()NiifieNkxxNxx1()(0,1)( )ffE yyNSd e2221 /1)NiiNk(22221)( ()/()( ()1()(/)/1ffffNiiE yySd eE yyt NkSe eNk(/22/22(),()afaftSe eytSe ey区间预测 zsq.zjgsuF检验检验现在我们把简单线性回归模型扩展为多元线性模型,例如模型是:如果我们对原假设是否成立感兴趣,我们该怎么办?01 12 23 3iiiiiyxxx01122:;Hww11122:Hww与至少一个不成立zsq.zjgsu第一步:估计受约束模型:受约束模型:or估计上述模型得到残差平方和估计上述模型得到残差平方和RSSr;F检验检验01 12 23 3iiiiiyw xw xx1 12 203 3iiiiiyw xw xx自由度为自由度为多少?多少?zsq.zjgsu第二步:估计不受约束模型不受约束模型:得到残差平方和RSSur;F检验检验01 12 23 3iiiiiyxxx它与它与RSSr相比谁相比谁大,为什么?大,为什么?zsq.zjgsuF检验检验第三步:定义F统计量:在经典线性模型假定假定下及其原假设下,该统计量服从分布。在这里,dfr是估计受约束模型时所得到的残差的自由度;dfur是估计不受约束模型时所得到的残差的自由度。()/()/rurrurururRSSRSSdfdfFRSSdfzsq.zjgsuF统计量服从F分布:如果原假设为真,即我们所施加的约束是正确的,那如果原假设为真,即我们所施加的约束是正确的,那么,尽管么,尽管RSSrRSSur,但,但RSSr与与RSSur应该相差不应该相差不多,因此,如果相差很大,那么我们就应该怀疑原假多,因此,如果相差很大,那么我们就应该怀疑原假设了!由于设了!由于RSSr与与RSSur与被解释变量的测度单位有与被解释变量的测度单位有关,因此,我们把两者的差距除以关,因此,我们把两者的差距除以RSSur,以使其,以使其“无单位化无单位化”。 222222/(2);/(4);()/(2)rurrurRSSNRSSNRSSRSS4)()/2/(2,4)rururN -RSSRSSRSSFNF检验检验zsq.zjgsu一个直觉是当一个直觉是当F值远大于零时我们应该拒绝原假设。多远值远大于零时我们应该拒绝原假设。多远才算远?才算远?拒绝域:给定显著性水平a,设定临界值设定临界值 当我们依据样本所得到的当我们依据样本所得到的F值落在值落在 时,我们说时,我们说“在在a显著水平下拒绝原假设显著水平下拒绝原假设”。当我们依据样本得到当我们依据样本得到F值时,我们也能够依据值时,我们也能够依据F分布表计算,分布表计算,计量软件包在计量软件包在F值后所给出的值后所给出的P值正是这个概率。值正是这个概率。 F检验检验(,)rururFdfdfdfa(,),)rururaFdfdfdfzsq.zjgsuF统计量还被可以改写为所谓的R2形式。 F检验检验221;1;urrrurrurrurRSSRSSRRTSSTSSTSSTSS ()/()/(/)/()(/)/rurrurururrurrurururRSSRSSdfdfFRSSdfRSSTSSRSSTSSdfdfRSSTSSdf222()/()(1)/urrrurururRRdfdfRdfzsq.zjgsu练习题:证明:如果我们要检验所有的解释变量的联合显著性,那么F统计量等于变形可得22/(1)/(1)RkRNk 2111NNkkFR zsq.zjgsut检验与检验与F检验的联系与区别检验的联系与区别联系联系 区别区别t检验关注的单个参数的取值问题,如果检验关注的单个参数的取值问题,如果需要同时关注多个参数的取值问题,那需要同时关注多个参数的取值问题,那么此时我们应该利用么此时我们应该利用F检验。检验。 单个变量显著并不意味着变量联合显著,单个变量显著并不意味着变量联合显著,反之亦然反之亦然。 2jtFzsq.zjgsu多元线性回归模型矩阵表示zsq.zjgsu为什么要引入多元线性回归模型为什么要引入多元线性回归模型目标:目标:分析受教育程度对工资收入的影响简单回归能实现目标吗?iiiiiiiiiimarrmaleeeducwagewageeduceducabilmarrsexeeducwage43210exp,exp多元线性回归模型:能力高吗?单纯影响吗?模型解释的对能反映相关吗?与零均值吗?里包含什么?zsq.zjgsu多元线性回归模型的一般形式多元线性回归模型的一般形式 ikikiiixxxy22110zsq.zjgsu偏回归系数偏回归系数(partial regression coefficients)的净影响。对影响后度量了排除影响后的剩余部分中排除了为进行回归所得的残差对将为利用记例:的影响。的变化对不变,仅仅影响,即保持其它因素的净对了称为偏回归系数,度量yxxeyexxexxOLSexxyyxyxkjjjj12211121121122110*), 2 , 1(zsq.zjgsu多元线性回归模型的矩阵表示多元线性回归模型的矩阵表示 nkknnkknUBxxxxxxXyyyYUXBY2110121211121111zsq.zjgsu多元线性回归模型的多元线性回归模型的OLSEOLSE表达式表达式121211(.)(.),()()2220()ni inniQA BabaaabbbdQdQABdBdAQeeYXB YXBYYBXYBXXBQXYXXBBBXXXY 推导:zsq.zjgsu参数的参数的OLSEOLSE的统计性质的统计性质 1. 线性 :2. 无偏性 3. 有效性UXXXBYXXXB11)()(121211)()()()()()(),(XXXXIXXXUUEXXXBBBBEBBCovnzsq.zjgsu作业P56:5,6,9 zsq.zjgsu

    注意事项

    本文(计量经济学普通最小二乘法假设检验.pptx)为本站会员(修****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开