2022年人教版八级数学上第十三章《轴对称》全章教案.docx
-
资源ID:12816575
资源大小:281.43KB
全文页数:14页
- 资源格式: DOCX
下载积分:4.3金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2022年人教版八级数学上第十三章《轴对称》全章教案.docx
精品学习资源教案目标:13.1轴对称( 1 )欢迎下载精品学习资源1. 明白轴对称图形和两个图形成轴对称的概念,知道轴对称图形和两个图形成轴对称的区分与联系2. 探究成轴对称的两个图形的性质和轴对称图形的性质,体会由详细到抽象熟悉问题的过程,感悟类比方法在讨论数学问题中的作用3. 明白线段垂直平分线的概念教案重、难点:轴对称的概念和性质教案过程:一、问题导入:引言对称现象无处不在,从自然景观到艺术作品,从建筑物到交通标志,甚至日常生活用品,都可以找到对称的例子,对称给我们带来美的感受!二、课本精讲:问题 1 如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,就得到了漂亮的窗花观看得到的窗花,你能发觉它们有什么共同的特点吗?假如一个平面图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴这时,我们也说这个图形关于这条直线(成轴)对称 老师:你能举出一些轴对称图形的例子吗?问题 2观看下面每对图形(如图),你能类比前面的内容概括出它们的共同特点吗?共同特点:每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合把一个图形沿着某一条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点老师:你能再举出一些两个图形成轴对称的例子吗?老师:你能结合详细的图形说明轴对称图形和两个图形成轴对称有什么区分与联系吗?两者的联系:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称 两者的区分:轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称指的是两个图形之间的位置1 / 13欢迎下载精品学习资源关系,这两个图形沿对称轴折叠后能够重合问题 3如图, ABC 和 A B C关于直线 MN 对称,点 A ,B ,C分别是点 A, B, C 的对称点,线段 AA, BB , CC 与直线 MN 有什么关系?老师:你能说明其中的道理吗?上面的问题说明“假如 ABC 和 AB C关于直线 MN 对称,那么,直线 MN 垂直线段 AA , BB 和 CC ,并且直线 MN 仍平分线段 AA, BB 和 CC ”假如将其中的“三角形”改为“四边形”“五边形”其他条件不变,上述结论仍成立吗?问题 3 如图, ABC 和 A B C关于直线 MN 对称,点 A ,B ,C分别是点 A, B, C 的对称点,线段 AA, BB , CC 与直线 MN 有什么关系? 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线老师:你能用数学语言概括前面的结论吗?成轴对称的两个图形的性质:假如两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线即对称点所连线段被对称轴垂直平分;对称轴垂直平分对称点所连线段问题 4下图是一个轴对称图形,你能发觉什么结论?能说明理由吗?结论:直线 l 垂直线段 AA, BB ,直线 l 平分线段AA, BB (或直线 l 是线段 AA, BB 的垂直平分线)老师:你能用数学语言概括前面的结论吗?轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线三、巩固提高:教科书 60 页练习 1 、2四、课堂小结:( 1 )本节课学习了哪些主要内容?( 2 )轴对称图形和两个图形成轴对称的区分与联系是什么?( 3 )成轴对称的两个图形有什么性质?轴对称图形有什么性质?我们是怎么探究这些性质的?五、课后作业:教科书习题 13.1第 1 、2 、 3、4 、5 题课后反思:欢迎下载精品学习资源教案目标:13.1轴对称( 2 )欢迎下载精品学习资源1. 懂得线段垂直平分线的性质和判定2. 能运用线段垂直平分线的性质和判定解决实际问题3. 会用尺规经过已知直线外一点作这条直线的垂线, 明白作图的道理教案重、难点: 线段垂直平分线的性质教案过程:一、问题导入:欢迎下载精品学习资源探究并证明线段垂直平分线的性质如图,直线 l 垂直平分线段AB , P1 ,P2 , P3 ,是 l 上的点,请猜想点P1 , P2 , P3 , 到点 A 与点 B 的距离之间的数量关系老师:你能用不同的方法验证这一结论吗? 二、课本精讲:请在图中的直线 l 上任取一点,那么这一点与线段AB 两个端点的距离相等吗? 线段垂直平分线上的点与这条线段两个端点的距离相等证明:“线段垂直平分线上的点到线段两端点的距离相等”已知:如图,直线l AB,垂足为 C,AC =CB ,点 P 在 l 上 求证: PA =PB用符号语言表示为: CA =CB , l AB, PA =PB线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等老师:反过来,假如PA = PB,那么点 P 是否在线段 AB 的垂直平分线上呢? 点 P 在线段 AB 的垂直平分线上已知:如图, PA = PB求证:点 P 在线段 AB 的垂直平分线上 用数学符号表示为: PA =PB,点 P 在 AB 的垂直平分线上与一条线段两个端点距离相等的点,在这条线段的垂直平分线上老师:你能再找一些到线段AB 两端点的距离相等的点吗?能找到多少个到线段AB两端点距离相等的点?这些点能组成什么几何图形?在线段 AB 的垂直平分线 l 上的点与 A, B 的距离都相等;反过来,与A, B 的距离相等的点都在直线l 上,所以直线 l 可以看成与两点 A、 B 的距离相等的全部点的集合老师:如何用尺规作图的方法经过直线外一点作已知直线的垂线?三、巩固提高:教科书 62 页练习 1 、2.四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )线段垂直平分线的性质和判定是如何得到的?两者之间有什么关系?( 3 )如何判定一条直线是否是线段的垂直平分线? 五、课后作业:教科书习题 13.1第 6 、9 题课后反思:13.1 轴对称( 3 )教案目标:欢迎下载精品学习资源1. 能用尺规作线段的垂直平分线2. 进一步明白作图的一般步骤和作图语言,明白作图的依据3. 运用尺规作图的方法解决简洁的作图问题教案重点: 作线段的垂直平分线教案难点: 作线段的垂直平分线教案过程:一、问题导入:有时我们感觉两个平面图形是轴对称的,如何验证呢? 不折叠图形,你能精确地作出轴对称图形的对称轴吗? 二、课本精讲:作线段的垂直平分线我们已能用尺规完成:( 1 )作一条线段等于已知线段;( 2 )作一个角等于已知角;( 3 )作一个角的平分线;( 4 )经过已知直线外一点作这条直线的垂线 老师:那么利用尺规仍能解决什么作图问题呢?例 1如图,点 A 和点 B 关于某条直线成轴对称,你能作出这条直线吗?老师:怎样作线段AB 的垂直平分线呢? 作法:如图( 1 )分别以点 A, B 为圆心,以大于AB 的为半径作弧,两弧相交于 C,D 两点;( 2 )作直线 CD CD 就是所求作的直线老师:这种作法的依据是什么?老师:这种作图方法仍有哪些作用? 确定线段的中点老师:假如两个图形成轴对称,怎样作出图形的对称轴?假如两个图形成轴对称,其对称轴是任何一对对应点所连线段的垂直平分线因此, 只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴如图中的五角星,请作出它的一条对称轴.你能作出这个五角星的其他对称轴吗? 它共有几条对称轴?三、巩固提高:教科书 64 页练习 1 、2 、3四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )作线段的垂直平分线的依据是什么?举例说明这种作法有哪些运用?( 3 )如何用尺规作轴对称图形的对称轴?五、课后作业:教科书习题 13.1第 10 、12 题 课后反思:欢迎下载精品学习资源欢迎下载精品学习资源教案目标:13.2 画轴对称图形( 1 )欢迎下载精品学习资源1. 懂得图形轴对称变换的性质2. 能按要求画出一个平面图形关于某直线对称的图形教案重点: 画轴对称图形教案难点: 画轴对称图形 教案过程:一、问题导入:在一张半透亮纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?二、课本精讲:请动手在一张纸上画一个你喜爱的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形 一个平面图形和与它成轴对称的另一个图形之间有什么关系?由一个平面图形可以得到与它关于一条直线l 对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l 的对称点;连接任意一对对应点的线段被对称轴垂直平分老师:假如有一个图形和一条直线,如何作出这个图形关于这条直线对称的图形呢?例 1如图,已知 ABC 和直线 l,画出与 ABC 关于直线 l 对称的图形 画法:( 1 )如图,过点A 画直线 l 的垂线,垂足为点O,在垂线上截取 OA =OA,点 A就是点 A 关于直线 l 的对称点;( 2 )同理,分别画点B, C 关于直线 l 的对称点 B, C;( 3 )连接 AB , B C, C A,得到的 A B C即为所求老师:如何验证画出的图形与ABC 关于直线 l 对称?已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法几何图形都可以看作由点组成对于某些图形,只要画出图形中的一些特别点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形三、巩固提高:教科书 68 页练习 1 、2四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )一个平面图形和与它成轴对称的另一个图形之间有什么关系?( 3 )画轴对称图形的一般方法是什么?依据是什么? 五、课后作业:欢迎下载精品学习资源教科书习题 13.2第 1 题 课后反思:欢迎下载精品学习资源教案目标:13.2 画轴对称图形( 2 )欢迎下载精品学习资源1. 懂得在平面直角坐标系中,已知点关于x 轴或 y 轴对称的点的坐标的变化规律2. 把握在平面直角坐标系中作出一个图形的轴对称图形的方法教案重、难点: 在平面直角坐标系中关于x 轴或 y 轴对称的点的变化规律和作出与一个图形关于 x 轴或 y 轴对称的图形教案过程:一、问题导入:如图,假如以天安门为原点,分别以长安街和中轴线为x轴和 y 轴建立平面直角坐标系,对应于东直门的坐标,你能找到西直门的位置,说出西直门的坐标吗?二、课本精讲:探究并归纳已知点关于坐标轴对称的点的坐标变化规律对于平面直角坐标系中任意一点,你能找出其关于x 轴或 y 轴对称的点的坐标吗?它们之间有什么规律?在平面直角坐标系中,画出以下已知点及其关于x 轴对称的点,把它们的坐标填入表格中老师:观看下图中关于x 轴对称的每对对称点的坐标有怎样的变化规律?关于 x 轴对称的每对对称点的横坐标相等,纵坐标互为相反数老师:观看关于 y 轴对称的每对对称点的坐标有怎样的变化规律?关于 y 轴对称的每对对称点的横坐标互为相反数, 纵坐标相等老师:请你再找几个点,分别画出它们的对称点,检验一下你发觉的规律点( x, y)关于 x 轴对称的点的坐标为(, );点( x, y)关于 y 轴对称的点的坐标为(, )例 如图,四边形 ABCD 的四个顶点的坐标分别为A( -5 , 1 ), B( -2 ,1 ), C( -2 , 5 ), D ( -5 , 4 ),分别画出与四边形ABCD关于 x 轴和 y 轴对称的图形老师:归纳画一个图形关于x 轴或 y 轴对称的图形的方法和步骤.欢迎下载精品学习资源先求出已知图形中一些特别点(多边形的顶点)的对称点的坐标,描出并连接这些点,就可以得到这个图形的轴对称图形步骤简述为:( 1 )求特别点的坐标;(2 )描点;( 3 )连线 三、巩固提高:教科书 70 页练习 1 、2 、3四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )在平面直角坐标系中,已知点关于x 轴或 y 轴的对称点的坐标有什么变化规律,如何判定两个点是否关于x 轴或 y 轴对称?( 3 )说一说画一个图形关于x 轴或 y 轴对称的图形的方法和步骤五、课后作业:教科书习题 13.2第 2 、4 、 5 题 课后反思:欢迎下载精品学习资源教案目标:13.3 等腰三角形( 1 )欢迎下载精品学习资源1. 探究并证明等腰三角形的两个性质2. 能利用性质证明两个角相等或两条线段相等3. 结合等腰三角形性质的探究与证明过程,体会轴对称在讨论几何问题中的作用教案重、难点: 探究并证明等腰三角形性质教案过程:一、问题导入:如下列图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它绽开,得到的 ABC 有什么特点?老师:认真观看自己剪出的等腰三角形纸片,你能发觉这个等腰三角形有什么特点吗?老师:同学们剪下的等腰三角形纸片大小不同,外形各异,是否都具有上述所概括的特点?二、课本精讲:老师:在练习本上任意画一个等腰三角形,把它剪下来,折一折,上面得出的结论仍旧成立吗?由此你能概括出等腰三角形的性质吗?欢迎下载精品学习资源等腰三角形的特点:( 1 )等腰三角形的两个底角相等;( 2 )等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合老师:利用试验操作的方法,我们发觉并概括出等腰三角形的性质1 和性质 2 对于性质 1 ,你能通过严格的规律推理证明这个结论吗?( 1 )你能依据结论画出图形,写出已知、求证吗?( 2 )结合所画的图形,你认为证明两个底角相等的思路是什么?( 3 )如何在一个等腰三角形中构造出两个全等三角形呢?从剪图、折纸的过程中你能获得什么启示?已知:如图, ABC 中, AB =AC求证: B = C你仍有其他方法证明性质1 吗?可以作底边的高线或顶角的角平分线.老师:性质 2 可以分解为三个命题,本节课证明“等腰三角形的底边上的中线也是底边上的高和顶角平分线”老师:在等腰三角形性质的探究过程和证明过程中,“折痕”“帮助线”发挥了特别重要的作用,由此,你能发觉等腰三角形具有什么特点?等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴 三、巩固提高:教科书 77 页练习 1 、2四、课堂小结:( 1 )本节课学习了哪些主要内容?( 2 )我们是怎么探究等腰三角形的性质的?( 3 )本节课你学到了哪些证明线段相等或角相等的方法? 五、课后作业:教科书习题 13.3第 1 、2 、 4、6 题课后反思:13.3等腰三角形( 2 )教案目标:1. 探究等腰三角形判定定理2. 懂得等腰三角形的判定定理,并会运用其进行简洁的证明3. 明白等腰三角形的尺规作图.教案重、难点: 懂得和运用等腰三角形的判定定理教案过程:一、问题导入:问题等腰三角形性质定理的内容是什么?这个命题的题设和结论分别是什么? 性质定理的条件是:一个三角形中有两条边相等结论:这两条边所对的角相等 二、课本精讲:欢迎下载精品学习资源摸索性质定理证明方法是什么?作顶角的平分线或底边上的高或底边的中线,将一个三角形的问题转化为两个全等三角形来证明两个角相等问题一个三角形满意什么条件是等腰三角形?摸索 1假如一个三角形有两个角相等,那么这两个角所对的边有什么关系? 这两个角所对的边相等摸索 2这个命题的题设和结论又分别是什么呢?如何证明这个命题? 题设:一个三角形有两个角相等结论:这两个角所对的边相等问题类比等腰三角形性质定理的证明方法,你能挑选一种来证明这个命题吗? 已知:如图,在ABC 中, B = C. 求证: AB =AC老师:你仍有其他证明方法吗?摸索能作底边 BC 上的中线吗? 等腰三角形的判定方法:假如一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”) 符号语言:在 ABC 中, B = C, AB =AC摸索与等腰三角形性质进行比较看有什么区分?例 1求证:假如三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.已知: CAE 是 ABC 的外角, 1 = 2 , AD BC 求证: AB =AC.例 2已知等腰三角形底边长为a ,底边上的高的长为h ,求作这个等腰三角形.作法:( 1 )作线段AB=a ;( 2 )作线段AB的垂直平分线MN ,与AB相交于点 D;( 3 )在 MN 上取一点 C,使 DC =h ;( 4 )连接 AC, BC ,就 ABC 就是所求作的等腰三角形.三、巩固提高:教科书 79 页练习 1 、2 、3 、4四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )等腰三角形的判定方法有哪几种?( 3 )结合本节课的学习,谈谈等腰三角形性质和判定的区分和联系 五、课后作业:教科书习题 13.3第 2 、5 题课后反思:13.3等腰三角形( 3 )欢迎下载精品学习资源教案目标:1. 探究等边三角形的性质和判定2. 能运用等边三角形的性质和判定进行运算和证明教案重、难点: 探究等边三角形的性质与判定 教案过程:一、问题导入:问题满意什么条件的三角形是等边三角形? 三条边都相等的三角形是等边三角形二、课本精讲:请分别画出一个等腰三角形和等边三角形,结合你画的图形说出它们有什么区分和联系?联系:等边三角形是特别的等腰三角形;区分:等边三角形有三条相等的边,而等腰三角形只有两条.问题等腰三角形有哪些特别的性质呢? 从边的角度:两腰相等;从角的角度:等边对等角;从对称性的角度:轴对称图形、三线合一摸索将等腰三角形的性质用于等边三角形,你能得到什么结论? 结合等腰三角形的性质,你能填出等边三角形对应的结论吗?两边相等两底角相等是(三线合一)(定义)(等边对等角)一条对称轴三边相等(定义)图形边角轴对称图形等腰三角形等边三角形对“等边三角形的三个内角都相等,并且每一个角都等于60 °”这一结论进行证明 .已知: ABC 是等边三角形 求证: A = B = C =60 ° 证明: ABC 是等边三角形, BC = AC, BC = AB A = B, A = C A = B = C A + B + C =180 °, A =60 ° A = B = C =60 ° 等边三角形的性质:等边三角形的三个内角都相等,并且每一个角都等于60 °.符号语言: ABC 是等边三角形, A = B = C =60 °摸索利用所学学问判定,等边三角形是轴对称图形吗?如是轴对称图形,请画出它的对称轴 .问题等边三角形除了用定义(即用边)来判定以外,能否利用角来判定呢?欢迎下载精品学习资源摸索 1一个三角形的三个内角满意什么条件是等边三角形?摸索 2一个等腰三角形满意什么条件是等边三角形?三个角都相等的三角形或者一个角为60 °的等腰三角形 请你将得到的这两个命题进行证明.等边三角形的判定定理1 :三个角都相等的三角形是等边三角形 符号语言:在 ABC 中, A= B = C , ABC 是等边三角形 等边三角形的判定定理2 :有一个角为 60 °的等腰三角形是等边三角形 符号语言:在 ABC 中, BC = AC, A =60 °, ABC 是等边三角形 判定等边三角形的方法:从边的角度:等边三角形的定义;从角的角度:等边三角形的两条判定定理 等边三角形的判定定理1 :三个角都相等的三角形是等边三角形 等边三角形的判定定理2 :有一个角为 60 °的等腰三角形例 1如图, ABC 是等边三角形, DE BC , 分别交 AB ,AC 于点 D , E求证: ADE 是等边三角形 .三、巩固提高:教科书 80 页练习 1 、2四、课堂小结:( 1 )本节课学习了等边三角形的性质和判定;( 2 )等边三角形与等腰三角形相比有哪些特别的性质? 共有几种判定等边三角形的方法?( 3 )结合本节课的学习,谈谈讨论三角形的方法五、课后作业:教科书习题 13.3第 12 、14 题 课后反思:13.3等腰三角形( 4 )教案目标:1. 探究含 30 °角的直角三角形的性质2. 懂得含 30 °角的直角三角形的性质,并会应用它进行有关的证明和运算教案重、难点: 探究并懂得含30 °角的直角三角形的性质.欢迎下载精品学习资源教案过程:一、问题导入:问题已知 ABC 中, A =60 ° ,() .请你在括号内补充一个条件,使ABC 能成为等边三角形.二、课本精讲:摸索 1等边三角形是轴对称图形,如沿着其中一条对称轴折叠,能产生什么特别图形?摸索 2这个特别的直角三角形相比一般的直角三角形有什么不同之处,它有什么特殊性质?活动用两个全等的含 30 °角的直角三角尺,你能拼出怎样的三角形?能拼出等边三角形吗?请说说你的理由问题你能借助这个图形,找到含30 °角的直角 ABC 的直角边 BC 与斜边 AB 之间有什么数量关系吗?猜想在直角三角形中,假如一个锐角等于30 °,那么它所对的直角边等于斜边的一半.问题请说一说你猜想的命题中,条件和结论分别是什么?并结合图形,用符号语言表述出来 .摸索这个命题是真命题吗?请进行证明已知:如图,在 Rt ABC 中, C =90 °, A=30 ° . 求证: BC =AB 在直角三角形中,假如一个锐角等于30 °,那么它所对的直角边等于斜边的一半.符号语言:在 Rt ABC 中, C =90 °, A =30 °, BC =AB 例 如图是屋架设计图的一部分,点D 是斜梁 AB 的中点,立柱BC 、DE 垂直于横梁 AC, AB =7.4 cm, A =30 °,立柱 BC 、DE 要多长?三、巩固提高: 教科书 81 页练习四、课堂小结:( 1 )本节课学习了哪些内容?( 2 )在应用含 30 °角的直角三角形的性质时,能解决哪些问题?需要留意哪些问题?欢迎下载精品学习资源五、课后作业:教科书习题 13.3第 15 题 课后反思:欢迎下载