2022年传感器与检测技术期末复习题.docx
精品学习资源传感器与检测技术期末复习题 2021.51、 依据国标,传感器的定义是:P22、 传感器一般由敏锐元件、转换元件、转换电路三部分组成;3、 肯定误差4、 相对误差5、 系统误差6、 随机误差7、 引用误差8、 对一台确定的外表或一个检测系统,最大引用误差是一个定值9、 测量外表一般采纳最大引用误差不能超过的答应值作为划分精度等级的尺度;10、某外表的精度等级为0.1 级,是表示;在使用时它的最大引用误差不超过±1.0;即在整个量程内它的肯定误差最大值不会超过其量程的±1.0 ;11、精度等级已知的测量外表只有在被测量值接近满量程时,才能发挥它的测量精度;12、静态特性表示传感器在被测量各个值处于稳固状态时的输入输出关系;静态特性的主要技术指标有:线性度、迟滞特性、重复性、灵敏度、辨论力和阈值、稳固性和温度稳固性、漂移、静态误差等;13、传感器的动态性能指标主要有:固有频率、阻尼系数、频响范畴、频率特性、时间常数、上升时间、响应时间、过冲量、衰减率、稳态误差、临界速度、临界频率等;14、辨论力(辨论率)指传感器能检测到的最小的输入增量,可用肯定值、也可用满量程的百分数表示;15、阈值:自控系统中能产生一个校正动作的最小输入值;16、辨论力说明白传感器的最小的可测出的输入变量;阈值说明白传感器的最小可测出的输入量;17、传感器的命名由主题词加四修饰语构成:主题词;第一级修饰语;其次级修饰语;第三级修饰语;第四级修饰语;传感器的代号依次为:主称被测量转换原理序号;主称传感器,代号 C;被测量用一个或两个汉语拼音的第一个大写字母标记;转换原理用一个或两个汉语拼音的第一个大写字母标记;序号用数字标记,厂家自定;18、传感器的标定是利用精度高一级的标准器具对传感器进行定度的过程,有静态标定和动态标定两种;静态标定用于检验测试传感器的静态特性指标,如线性度、灵敏度、滞后和重复性等;动态标定是为了确定动态灵敏度、固有频率和频响范畴等动态指标;19、电阻式传感器是利用力、位移、加速度、角速度、温度、光照强度等非电学量的变化引起电路中电阻阻值的变化,从而将非电量转化为电量进行测量的传感器;20、电阻应变效应:导电材料在外力的作用下发生几何(机械)形变,引起其电阻值变化的现象;21、金属材料的电阻相对变化与其线应变成正比;率发生变化的现象;压阻效应有各向异性特点,沿不同的方向施加应力和沿不同方向22、压阻效应,是指当半导体受到应力作用时,由于载流子迁移率的变化,使其电阻通过电流,其电阻率变化会不相同;压阻效应被用来制成各种压力、应力、应变、速度、加速度传感器,把力学量转换成电信号;23、金属铂( Pt)的电阻值随温度变化而变化时,具有很好的重现性和稳固性,可用来制作铂电阻温度传感器;如Pt100 的电阻变化率为0.385 1/ ,环境温度为0时,其阻值为 100 ;欢迎下载精品学习资源24、三线制铂电阻温度传感器为排除线路导线电阻引起的测量误差,采纳了全等臂电桥;四线制铂电阻温度传感器用两条附加测试线供应恒定电源(接恒流源),另两条线测待测电阻的压降(换算出阻值),因电压表输入阻抗高(电流很小),故误差小,不必采纳电桥;25、 电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换;常见的有自感式,互感式和涡流式三种;26、 电涡流效应是指金属导体置于交变磁场中会产生电涡流,且该电涡流所产生磁场的方向与原磁场方向相反的一种物理现象;27、电涡流传感器的敏锐元件是线圈,当给线圈通以交变电流并使它接近金属导体 时,线圈产生的磁场就会被导体电涡流产生的磁场部分抵消,使线圈的电感量、阻抗和品质因数发生变化;这种变化与导体的几何尺寸、导电率、导磁率有关,也与线圈的几何参量、电流的频率和线圈到被测导体间的距离有关;28、电容式传感器将被测的机械量,如位移、压力等转换为电容量变化的传感器;它的敏锐部分就是具有可变参数的电容器;其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器;如忽视边缘效应,平板电容器的电容为A ,式中 为极间介质的介电常数, A 为两电极相互掩盖的有效面积 , 为两电极之间的距离; 、A 、 三个参数中任一个的变化都将引起电容量变化,并可用于测量;因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类;29、热电效应: 把两种不同金属导体接成闭合回路,假如两端温度不同设 T TO ,就在回路中就会产生热电势;这种由于温度不同而产生电动势的现象,称为热电效应;如两端的温差越大,产生的热电势也越大;30、热 电 偶 用 于 测 温 目 的 的 基 本 性 质 可 归 结 为 以 下 四 条 ;1. 等值定律用两种不同的金属组成闭合电路,假如两端温度不同,就会产生热电动势;其大小取决于两种金属的性质和两端的温度,与金属导线尺寸、导线途中的温度及测量热电动势在电路中所取位置无关;2. 均匀导线定律如用同一种金属组成闭合电路就不管截面是否变化,也不管在电路内存在什么样的温度梯度,电路中都不会产生热电动势;3. 中间导线定律在热电偶插入第三种金属,只要插入金属的两端温度相同,不会使热电偶的热电动势发生变化;4. 叠加定律在热电偶插入第三种金属,插入金属的两端温度不同,发生附加热电动势后的总热电动势,等于各接点之间所产生热电动势的代数和;31、热电偶冷端温度补偿方法有:恒温法,公式修正法,显示外表机械零点调整法,补偿导线法,补偿电桥法等;32、热电偶产生的热电势取决于其两端的温度,只有在冷端温度保持恒定时,其输出的热电势才是测量端(热端)温度的单值函数;33、压电效应压电效应可分为正压电效应和逆压电效应;正压电效应是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又复原到不带电的状态;当外力作用方向转变时,电荷的极性也随之转变;晶体受力所产生的电荷量与外力的大小成正比;压电式传感欢迎下载精品学习资源器大多是利用正压电效应制成的;逆压电效应是指对晶体施加交变电场引起晶体机械变形的现象,又称电致伸缩效应;34、压电传感器只能应用于动态测量:由于外力作用在压电元件上产生的电荷只有在无泄漏的情形下才能储存,即需要测量回路具有无限大的输入阻抗,这实际上是不行能的,因此压电式传感器不能用于静态测量;35、压电传感器可用于力,压力,速度,加速度,振动等非电量的测量;36、霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall , 1855 1938)于 1879 年在讨论金属的导电机构时发觉的;当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会显现电势差,这一现象便是霍尔效应;这个电势差 也被叫做霍尔电势差;后来发觉半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面;37、霍尔效应是讨论半导体材料性能的基本方法;通过霍尔效应试验测定的霍尔系数,能够判定半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数;38、流体中的霍尔效应是讨论“磁流体发电”的理论基础;39、霍尔开关有碰头式,滑近式,磁屏蔽式,集磁式几种形式;40、霍尔电流传感器原理与特点由于通电螺线管内部存在磁场,其大小与导线中的电流成正比,故可以利用霍尔传感器测量出磁场,从而确定导线中电流的大小;利用这一原理可以设计制成霍尔电流传感器;其优点是不与被测电路发生电接触,不影响被测电路,不消耗被测电源的功率,特殊适合于大电流传感;41、磁栅尺的结构,原理及应用P13042、使用磁栅尺进行位置测量时测量结果只与位置有关与速度无关,当磁尺与拾磁磁头间相对运动速度很低或处于相对静止状态时,也能进行位置测量;43、光照耀到某些物质上,引起物质的电性质发生变化,也就是光能量转换成电能;这类光致电变的现象被人们统称为光电效应;44、光电效应分为光电子发射、光电导效应和光生伏特效应;前一种现象发生在物体表面,又称外光电效应;后两种现象发生在物体内部,称为内光电效应;45、基于内光电效应的光电元器件有:光敏电阻,光敏二极管,光敏三级管46、光敏电阻的主要参数有光电流,亮阻;暗电流,暗阻;47、光电元件选用时应留意的特性有:光照特性,光谱特性,伏安特性,频率特性,温度特性,响应时间等;48、热释电效应:当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷;这种由于热变化而产生的电极化现象称为热释电效应;49、凡在肯定零度( -273)以上的环境,无所不有地发射出不同程度的红外线;现代物理学称之为热射线;50、红外线的特性 P16251、菲涅尔透镜多是由聚烯烃材料注压而成的薄片,镜片表面一面为光面,另一面刻录了由小到大的同心圆(或一组平行棱柱),它的纹理是利用光的干涉及扰射和依据 相对灵敏度和接收角度要求来设计的,透镜的要求很高,一片优质的透镜必需是表面光滑,纹理清楚,其厚度随用途而变,多在1mm左右,特性为面积较大,厚度薄及侦测距离远;欢迎下载精品学习资源菲涅尔透镜的在许多时候相当于红外线及可见光的凸透镜,成效较好,但成本比一般的凸透镜低许多;52、菲涅尔透镜作用有两个:一是聚焦作用,即将热释红外信号折射(反射),其次个作用是将探测区域内分为如干个明区和暗区,使进入探测区域的移动物体能以温 度变化的形式在PIR 上产生变化热释红外信号;53、菲涅耳透镜可以把透过窄带干涉滤光镜的光聚焦在硅光电二级探测器的光敏面上,菲涅尔透镜由有机玻璃制成,不能用任何有机溶液 如酒精等 擦拭,除尘时可先用蒸馏水或一般净水冲洗, 再用脱脂棉擦拭;54、假如你站在湖边,低头看脚下的水,你会发觉水是透亮的,反射不是特殊剧烈;如果你看远处的湖面,你会发觉水并不是透亮的,但反射特别剧烈;这就是“菲涅尔效应 ”;55、人体在非聂耳透镜前,静止时传感器无输出信号,活动时就能检测到,故也称为人体运动传感器;56、莫尔条纹:以透射光栅为例,当指示光栅上的线纹和标尺光栅上的线纹之间形成 一个小角度,并且两个光栅尺刻面相对平行放置时,在光源的照耀下,位于几乎垂直的栅纹上,形成明暗相间的条纹;这种条纹称为“莫尔条纹 ” 右图所示 ;严格地说,莫尔条纹排列的方向是与两片光栅线纹夹角的平分线相垂直;莫尔条纹中两条亮纹或两条暗纹之间的距离称为莫尔条纹的宽度,以W 表示;57、莫尔条纹具有以下特点:(1) 莫尔条纹的变化规律:两片光栅相对移过一个栅距,莫尔条纹移过一个条纹距离;由于光的衍射与干涉作用,莫尔条纹的变化规律近似正余 弦函数,变化周期数与光栅相对位移的栅距数同步;(2) 放大作用在两光栅栅线夹角较小的情形下,莫尔条纹宽度 和光栅栅距 W 、栅线角之间有以下关系;式中,的单位为rad , W 的单位为 mm ;由于倾角很小,sin 很小,就W= / 如 0.01mm, 0.01rad ,就上式可得W 1,即光栅放大了100 倍;(3) 均化误差作用莫尔条纹是由如干光栅条纹共用形成,例如每毫M100线的光栅, 10mm宽度的莫尔条纹就有 1000条线纹,这样栅距之间的相邻误差就被平均化了,排除了由于栅距不匀称、断裂等造成的误差;58、辨向电路无论测量直线位移仍是测量角位移,都必需能够依据传感器的输出信号判别移动的方向 , 即 判 断 是 正 向 移 动 仍 是 反 向 移 动 , 是 顺 时 针 旋 转 仍 是 逆 时 针 旋 转 ;但是,仅有一个光电元件的输出无法判别光栅的移动方向,由于在一点观看时,不论主光栅向哪个方向运动,莫尔条纹均作明暗交替变化;为了辨别方向,通常采纳在相隔1/4莫尔条纹间距B 的位置上安放两个光电元件,获得相位差为90o 的两个信号,然后送到辨向电路进行处理;细分的方法有多种,如直接细分、电桥细分、锁相细分、调制信号细分、软件细分等;下面介绍常用的直接细分方法;直接细分又称位置细分,常用细分数为4,因此也称为四倍频细分;图12.1.7给出了一种四倍频细分电路及其波形;在上述辨向电路的基础上,将获得的两个相位相差 90o 的正弦信号分别整形和反相,就可得到4 个相位依次为 0° C、欢迎下载精品学习资源90oC、180oC、270oC 的方波信号,经 RC微分电路后就可在光栅移动一个栅距时,得到匀称分布的 4 个计数脉冲,再送到可逆计数器进行加法或减法计数, 这样可将分辩率提高 4 倍;59、光电编码器,可分为增量式、肯定式以及混合式三种;60、1 增量式编码器 :增量式编码器是直接利用光电转换原理输出三组方波脉冲A 、B 和 Z相; A 、B 两组脉冲相位差 90;,从而可便利的判定出旋转方向,而Z 相为每转一个脉冲,用于基准点定位;它的优点是原理构造简洁,机械平均寿命可在几万小时以上,抗干扰才能强,牢靠性高,适合于长距离传输;其缺点是无法输出轴转动的肯定位置信息;2 肯定式编码器:肯定式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有如干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件依据受光照与否转换出相应的电平信号,形成二进制数;这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码;明显,吗道必需 N 条吗道;目前国内已有 16 位的肯定编码器产品;3 混合式肯定编码器:混合式肯定编码器,它输出两组信息,一组信息用于检测磁极位置,带有肯定信息功能;另一组就完全同增量式编码器的输出信息;61、增量式编码器需要计数和辨向系统,肯定式直接输出自然二进制码或格雷码,不需辨向电路,掉电不影响编码数据获得;而增量式断电后就丢失位置信号;JohannDoppler)而命名的,他于1842年第一提出了这一理论;主要内容为:物体辐射的波长由于光源和观测者的相对运动而产生变化;在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移 blueshift );当运动在波源后面时,会产生相反的效应;波长变得较长,频率变得较低(红移 redshift );波源的速度越高,所产生的效应62、多普勒效应是为纪念奥地利物理学家及数学家克里斯琴·约翰 ·多普勒( Christian越大;依据光波红(蓝)移的程度,可以运算出波源循着观测方向运动的速度;63、光纤传感器可以分为两大类:一类是功能型(传感型)传感器;另一类是非功能型(传光型)传感器;一、功能型传感器:功能型传感器是利用光纤本身的特性把光纤作为敏锐元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号;光纤在其中不仅是导光媒质,而且也是敏锐元件,光在光纤内受被测量调制,多采纳多模光纤;优点:结构紧凑、灵敏度高; 缺点:须用特殊光纤,成本高,典型例子:光纤陀螺、光纤水听器等二、非功能型传感器:非功能型传感器是利用其它敏锐元件感受被测量的变化, 光纤仅作为信息的传输介质,常采纳单模光纤;光纤在其中仅起导光作用,光照在光纤型敏锐元件上受被测量调制;优点:无需特殊光纤及其他特殊技术;比较简洁实现,成本低;缺点:灵敏度较低;有用化的大都是非功能型的光纤传感器;64、光纤传感器是最近几年显现的新技术,可以用来测量多种物理量,比如声场、电场、压力、温度、角速度、加速度等,仍可以完成现有测量技术难以完成的测欢迎下载精品学习资源量任务;在狭小的空间里,在强电磁干扰和高电压的环境里,光纤传感器都显示出了特殊的才能;目前光纤传感器已经有70 多种,大致上分成光纤自身传感器和利用光纤的传感器;65、光纤传感器的频率调制技术是应用多普勒效应实现的;66、电光效应electro-opticaleffect某些各向同性的透亮物质在电场作用下显示出光学各向异性,物质的折射率因外加电场而发生变化的现象为电光效应;利用电光效应可对光纤传感器进行偏振调制;67、磁光效应是指处于磁化状态的物质与光之间发生相互作用而引起的各种光学现象;包括法拉第效应、克尔磁光效应、塞曼效应和科顿-穆顿效应等;这些效应均起源 于物质的磁化,反映了光与物质磁性间的联系;法拉第效应1845年由M. 法拉第发觉;当线偏振光(见光的偏振)在介质中传播时,如在平行于光的传播方向上加一强磁场,就光振动方向将发生偏转,偏转角度 与磁感应强度B 和光穿越介质的长度l的乘积成正比,即 VBl ,比例系数V 称为费尔德常数,与介质性质及光波频率有关;偏转方向取决于介质性质和磁场方向;上述现象称为法拉第效应或磁致旋光效应;该效应可用来分析碳氢化合物,因每种碳氢化合物有各自的磁致旋光特性;在光谱讨论中,可借以得到关于激发能级的有关学问;在激光技术中可用来隔离反射光,也可作为调制光波的手段;科顿- 穆顿效应 1907年 A. 科顿和H. 穆顿第一在液体中发觉;光在透亮介质中传播时,如在垂直于光的传播方向上加一外磁场,就介质表现出单轴晶体(见双折射)的性质,光轴沿磁场方向,主折射率之差正比于磁感应强度的平方;此效应也称磁致双折射;W. 佛克脱在气体中也发觉了同样效应,称佛克脱效应,它比前者要弱得多;当介质对两种相互垂直的振动有不同吸取系数时,就表现出二向色性的性质,称为磁二向色性效应;克尔磁光效应 入射的线偏振光在已磁化的物质表面反射时,振动面发生旋转的现象, 1876 年由 J. 克尔发觉;克尔磁光效应分极向、纵向和横向三种,分别对应物质的磁化强度与反射表面垂直、与表面和入射面平行、与表面平行而与入射面垂直三种情形;极向和纵向克尔磁光效应的磁致旋光都正比于磁化强度,一般极向的效应最强,纵向次之,横向就无明显的磁致旋光;克尔磁光效应的最重要应用是观看铁磁体的磁畴(见磁介质、铁磁性);不同的磁畴有不同的自发磁化方向,引起反射光振动面的不同旋转,通过偏振片观看反射光时,将观看到与各磁畴对应的明暗不同的区域;用此方法仍可对磁畴变化作动态观看;利用电光效应可对光纤传感器进行偏振调制;68、 光弹效应( photoelastic effect )光弹效应也叫应力双折射效应;光弹性效应:当外力或振动作用于弹性体产生应变时,弹性体的折射率发生变化,出现双折射性质,这种有内应力的透亮介质中 o 光和 e 光折射率不相等,它与应力分布有关;这种现象即为光弹性效应;69、 电阻式半导体气体传感器主要是指半导体金属氧化物陶瓷气体传感器,是一种用金属氧化物薄膜 例如: Sn02, ZnO Fe203, Ti02 等制成的阻抗器件,其电阻随着气体含量不同而变化;气味分子在薄膜表面进行仍原反应以引起传感器传导率的变化;为了排除气味分子仍必需发生一次氧化反应;传感器内的加热器可加热到200 400,可烧掉附着的油污,尘埃,加速气体吸附,有助于氧化反应进程,提高了灵敏度和响应速度.70、肯定湿度 : 单位体积空气中所含水蒸汽的质量,叫做空气的“肯定湿度 ”;它是大气干湿程度的物理量的一种表示方式;通常以1 立方 M 空气内所含有的水蒸汽的克数来表示;71、相对湿度空气中实际所含水蒸汽密度和同温度下饱和水蒸汽密度的百分比值,叫做空气的 “相对湿度 ”;也可以用水汽压强的比来表示;欢迎下载精品学习资源72、 露点温度是指空气在水汽含量和气压都不转变的条件下,冷却到饱和时的温度;形象地说,就是空气中的水蒸气变为露珠时候的温度叫露点温度;露点温度本是个温度值,可为什么用它来表示湿度呢?这是由于,当空气中水汽已达到饱和时,气温与露点相同;当水汽未达到饱和时,气温肯定高于露点温度;所以露点与气温的差值可以表示空气中的水汽距离饱和的程度;在100% 的相对湿度时,四周环境的温度就是露点温度;露点越小于四周环境的温度,结露的可能性就越小,也就意味着空气越干燥,露点不受温度影响,但受压力影响;73、湿度传感器具有如下特点:( 1)、 精度和长期稳固性湿度传感器的精度应达到±2%± 5%RH ,达不到这个水平很难作为计量器具使用,湿度传感器要达到 ±2%± 3%RH 的精度是比较困难的,通常产品资料中给出的特性是在常温( 20 ±10 )和干净的气体中测量的;在实际使用中,由于尘土、油污及有害气体的影响,使用时间一长,会产生老化,精度下降,湿度传感器的精度水平要结合其长期稳固性去判定,一般说来,长期稳固性和使用寿命是影响湿度传感器质量的头等问题,年漂移量掌握在 1%RH 水平的产品很少,一般都在±2% 左右,甚至更高;(2)、 湿度传感器的温度系数湿敏元件除对环境湿度敏锐外,对温度亦特别敏锐,其温度系数一般在0.20.8%RH/范畴内,而且有的湿敏元件在不同的相对湿度下,其温度系数又有差别;温漂非线性,这需要在电路上加温度补偿式;采纳单片机软件补偿,或无温度补偿的湿度传感器是保证不了全温范畴的精度的,湿度传感器温漂曲线的线性化直接影响到补偿的成效,非线性的温漂往往补偿不出较好的成效,只有采纳硬件温度跟随性补偿才会获得真实的补偿成效;湿度传感器工作的温度范畴也是重要参数;多数湿敏元件难以在40 以上正常工作;( 3 )、湿度传感器的供电金属氧化物陶瓷,高分子聚合物和氯化锂等湿敏材料施加直流电压时,会导致性能变化,甚至失效,所以这类湿度传感器不能用直流电压或有直流成份的沟通电压;必需是沟通电供电;( 4 )、 互换性 目前,湿度传感器普遍存在着互换性差的现象, 同一型号的传感器不能互换,严峻影响了使用成效,给修理、调试增加了困难,有些厂家在这方面作出了种种努力,(但互换性仍很差)取得了较好成效;( 5)、 湿度校正 校正湿度要比校正温度困难得多;温度标定往往用一根标准温度计作标准即可,而湿度的标定标准较难实现,干湿球温度计和一些常见的指针式湿度计是不能用来作标定的,精度无法保证,因其要求环境条件特别严格,一般情形,(最好在湿度环境适合的条件下)在缺乏完善的检定设备时,通常用简洁的饱和盐溶液检定法,并测量其温度;74, 对湿度传感器性能作初步判定的几种方法在湿度传感器实际标定困难的情形下,可以通过一些简便的方法进行湿度传感器性能判定与检查;( 1)、一样性判定,同一类型,同一厂家的湿度传感器产品最好一次购买两支以上,越多越说明问题,放在一起通电比较检测输出值,在相对稳固的条件下,观看测试的一样性;如进一步检测,可在 24h 内间隔一段时间记录,一天内一般都有高、中、低 3 种湿度和温度情形,可以较全面地观看产品的一样性和稳固性,包括温度补偿特性; ( 2)、用嘴呵气或利用其它加湿手段对传感器加湿,观看其灵敏度、重复性、升湿脱湿性能,以及辨论率,产品的最高量程等; 3 )、对产品作开盒和关盒两种情形的测试;比较是否一样,观看其热效应情形; 4 、对产品在高温状态和低温状态(依据说明书标准)进行测试,并复原到正常状态下检测和试验前的记录作比较,考查产品的温度适应性,并观看产品的一样性情形;产品的性能最终要依据质检部门正规完备的检测手段;利用饱和盐溶液作标定,也可使用名牌产品作比对检测,产品仍应进行长期使用过程中的长期标定才能较全面地判定湿度传感器的质量;75, 生物传感器 1 依据生物传感器中分子识别元件即敏锐元件可分为五类:酶传感器( enzymesensor ),微生物传感器( microbialsensor ),细胞传感器欢迎下载精品学习资源( organallsensor( immunolsensor),组织传感器(tis-suesensor)和免疫传感器);显而易见,所应用的敏锐材料依次为酶、微生物个体、细胞器、动植物组织、抗原和抗体;2 依据生物传感器的换能器即信号转换器分类有:生物电极( bioelectrode)传感器,半导体生物传感器(semiconductbiosensor),光生物传感器( opticalbiosensor),热生物传感器(calorimetricbiosensor),压电晶体生物传感器( piezoelectricbiosensor器、热敏电阻、压电晶体等;76, 智能传感器定义:所渭智能式传感器就是一种带行微处理机的,兼有信息检测、信息)等,换能器依次为电化学电极、半导体、光电转换处理、信息记忆、规律思维与判定功能的传感器;77 ,智能传感器的功能概括而言, 智能传感器的主要功能是:(1) 具有自校零、自标定、自校正功能;(2) 具有自动补偿功能;(3) 能够自动采集数据,并对数据进行预处理;(4) 能够自动进行检验、自选量程、 自寻故障;(5) 具有数据储备、记忆与信息处理功能;(6) 具有双向通讯、标准化数字输出或者符号输出功能;(7) 具有判定、决策处理功能;78 ,智能传感器特点与传统传感器相比,智能传感器的特点是:1. 精度高 2. 高牢靠性与高稳固性3. 高信噪比与高的辨论力4. 强的自适应性5. 低的价格性能比传感器 sensor一词来自拉丁语sentire,意思是 “觉察 ,领会 ”;其作用是对于诸如热、光、力、声、运动等物理或化学的刺激做出反应,感受被测刺激后定量地将其转化为电信号 ,信号调理电路对该信号进行放大、调制等处理, 再由变送器转化成适于记录和显示的形式输出;79. 抗干扰技术干扰的产生:干扰来自测量系统内部或外部;干扰的产生有两大类:电气设备干扰和放电干扰;电气设备干扰主要有射频干扰,工频干扰和感应干扰;放电干扰主要有弧光放电干扰,火花放电干扰,电晕放电干扰和天体,天电干扰;干扰的类型:机械干扰,热干扰,光干扰,温度干扰,化学干扰,电磁干扰等干扰的耦合方式:电磁耦合,静电电容耦合,漏电电流耦合,共阻抗耦合等;抑制干扰的措施:抑制干扰源,切断干扰途径,排除被干扰对象的敏锐性(干扰的三要素);1. 接地技术:低频电路(f<1MH)一点接地,可克服地电位差的影响和公共地线共阻抗引起的干扰;高频电路(f>10MH)大面积就近多点接地;要求强电地线与信号地线分设;模拟与数字,沟通与直流电路地线分设2. 屏蔽技术:有静电屏蔽,低频磁屏蔽,电磁屏蔽,驱动屏蔽(使用电压跟随器,“1: 1电压”使输出与输入电压幅值相同,相位一样,可有效抑制寄生电容耦合干扰;)3. 浮空(浮置):公共线不接机壳,大地,就与其无电的联系,阻断了干扰通路;4. 滤波技术:电源滤波;信号滤波;软件滤波;5. 隔离:光电隔离欢迎下载