欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年二次函数的动点问题.pdf

    • 资源ID:12864878       资源大小:1.09MB        全文页数:25页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年二次函数的动点问题.pdf

    学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料72xB(0,4) A(6,0) E F xyO 二次函数与四边形一二次函数与四边形的形状例 1.(浙江义乌市 ) 如图,抛物线223yxx与 x 轴交 A、B两点(A点在 B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2( 1)求 A、 B 两点的坐标及直线AC 的函数表达式;( 2)P 是线段 AC 上的一个动点,过P 点作 y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点 G 是抛物线上的动点,在x 轴上是否存在点F,使 A、C、F、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标; 如果不存在,请说明理由练习 1.(河南省实验区 ) 23如图,对称轴为直线72x的抛物线经过点A(6,0)和B(0,4)(1)求抛物线解析式及顶点坐标;(2)设点 E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以 OA 为对角线的平行四边形求平行四边形OEAF 的面积 S 与x之间的函数关系式,并写出自变量x的取值范围;当平行四边形OEAF 的面积为24 时,请判断平行四边形OEAF 是否为菱形?是否存在点E,使平行四边形OEAF 为正方形?若存在,求出点 E 的坐标;若不存在,请说明理由练习2. (四川省德阳市)25. 如图,已知与x轴交于点(10)A ,和(5 0)B,的抛物线1l的顶点为(3 4)C,抛物线2l与1l关于x轴对称,顶点为C( 1)求抛物线2l的函数关系式;(2)已知原点O,定点(0 4)D,2l上的点P与1l上的点P始终关于x轴对称,则当点P运动到何处时,以点DOPP, , ,为顶点的四边形是平行四边形?( 3)在2l上是否存在点M,使ABM是以AB为斜边且一个角为30的直角三角形?若存,求出点M的坐标;若不存在,说明理由A 543211 2 3 4 5 5 4 3 2 1 AEBC1O2l1lxy精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料练习 3.(山西卷)如图,已知抛物线1C与坐标轴的交点依次是( 4 0)A,( 2 0)B,(0 8)E,(1)求抛物线1C关于原点对称的抛物线2C的解析式;( 2)设抛物线1C的顶点为M,抛物线2C与x轴分别交于CD,两点(点C在点D的左侧),顶点为N,四边形MDNA的面积为S若点A,点D同时以每秒1 个单位的速度沿水平方向分别向右、向左运动;与此同时,点M,点N同时以每秒2 个单位的速度沿坚直方向分别向下、向上运动,直到点A与点D重合为止求出四边形MDNA的面积S与运动时间t之间的关系式,并写出自变量t的取值范围;(3)当t为何值时,四边形MDNA的面积S有最大值,并求出此最大值;( 4)在运动过程中,四边形MDNA能否形成矩形?若能,求出此时t的值;若不能,请说明理由二二次函数与四边形的面积例 1. (资阳市) 25. 如图 10,已知抛物线P:y=ax2+bx+c(a 0) 与 x 轴交于 A、B 两点( 点 A在 x 轴的正半轴上 ) ,与 y 轴交于点 C,矩形 DEFG 的一条边DE在线段 AB上,顶点 F、G分别在线段BC 、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:x -3 -2 1 2 y -52-4 -520 (1) 求 A、B、C三点的坐标;(2) 若点 D的坐标为 (m,0) ,矩形 DEFG 的面积为 S,求 S与 m的函数关系,并指出m的取值范围;(3) 当矩形 DEFG 的面积 S取最大值时,连接 DF并延长至点M , 使 FM=k DF,若点 M不在抛物线P上,求 k 的取值范围 . 练习 1.(辽宁省十二市第26 题)如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为( 8,0),点N的坐标为( 6, 4)(1)画出直角梯形OMNH绕点O旋转 180的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);(2)求出过A,B,C三点的抛物线的表达式;(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下, 四边形BEFG是否存在邻边相等的情况,图 10 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由练习 3.(吉林课改卷)如图,正方形ABCD的边长为2cm,在对称中心O处有一钉子动点P,Q同时从点A出发,点P沿ABC方向以每秒2cm的速度运动, 到点C停止,点Q沿AD方向以每秒1cm的速度运动,到点D停止P,Q两点用一条可伸缩的细橡皮筋联结,设x秒后橡皮筋扫过的面积为2cmy( 1)当01x时,求y与x之间的函数关系式;( 2)当橡皮筋刚好触及钉子时,求x值;( 3)当12x时,求y与x之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ的变化范围;( 4)当02x时,请在给出的直角坐标系中画出y与x之间的函数图象练习 4.(四川资阳卷)如图,已知抛物线l1:y=x2-4 的图象与x 轴相交于 A、C 两点, B 是抛物线 l1上的动点 (B 不与 A、C 重合 ),抛物线 l2与 l1关于 x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D. (1) 求 l2的解析式;(2) 求证:点 D 一定在 l2上;(3) ABCD能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由 . 注:计算结果不取近似值. 三二次函数与四边形的动态探究例 1.(荆门市 )28. 如图 1,在平面直角坐标系中,有一张矩形纸片OABC,已知 O(0,0),A(4,0),C(0,3),点 P 是 OA 边上的动点 (与点 O、A 不重合 )现将 PAB 沿 PB 翻折,得到 PDB;再在 OC边上选取适当的点E,将 POE 沿 PE 翻折,得到 PFE,并使直线PD、PF 重合B C P O D Q A B P C O D Q A y321O12x精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料(1)设 P(x,0),E(0,y),求 y 关于 x 的函数关系式,并求y 的最大值;(2)如图 2,若翻折后点D 落在 BC 边上,求过点P、B、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q,使 PEQ 是以 PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标例 2.已知抛物线yax2bxc 与 x 轴交于 A、B 两点,与 y 轴交于点 C,其中点 B 在 x 轴的正半轴上,点C 在 y 轴的正半轴上,线段OB、OC 的长( OBOC)是方程x210 x160 的两个根,且抛物线的对称轴是直线x 2( 1)求 A、B、C 三点的坐标;(2)求此抛物线的表达式;(3)连接 AC、BC,若点 E 是线段 AB 上的一个动点(与点A、点 B 不重合),过点 E 作 EFAC 交 BC 于点 F,连接 CE,设 AE 的长为 m, CEF 的面积为 S,求 S与 m 之间的函数关系式,并写出自变量m 的取值范围;(4)在( 3)的基础上试说明S是否存在最大值,若存在,请求出S 的最大值,并求出此时点E的坐标,判断此时BCE 的形状;若不存在,请说明理由例 3.(湖南省郴州 )如图,矩形ABCD 中, AB3,BC4,将矩形ABCD 沿对角线 A 平移,平移后的矩形为EFGH (A、E、C、G 始终在同一条直线上),当点E 与 C 重时停止移动平移中EF 与BC 交于点 N,GH 与 BC 的延长线交于点M,EH 与 DC 交于点 P,FG 与 DC 的延长线交于点Q设S 表示矩形 PCMH 的面积,S表示矩形 NFQC 的面积( 1) S与S相等吗?请说明理由( 2)设 AEx,写出 S和 x 之间的函数关系式,并求出x 取何值时S有最大值,最大值是多少?(3)如图 11,连结 BE,当 AE 为何值时,ABE是等腰三角形练习 1. 如图 12, 四边形 OABC 为直角梯形, A(4,0), B(3,4), C(0,4)点M从O出发以每秒2 个单位长度的速度向A运动;点N从B同时出发,以每秒1 个单位长度的速度向C运动其中一个动点到达终点时,另一个动点也随之停止运动过点N作NP垂直x轴于点P,连结AC 交 NP 于 Q,连结 MQ图 2 OCABxyDPEF图 1 FEPDyxBACOxNMQPHGFEDCBA图 11 QPNMHGFEDCBA图 10 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料( 1)点(填 M 或 N)能到达终点;(2)求 AQM 的面积 S与运动时间t 的函数关系式,并写出自变量 t 的取值范围,当t 为何值时, S的值最大;( 3)是否存在点M,使得 AQM 为直角三角形?若存在,求出点M 的坐标,若不存在,说明理由练习 2.(江西省 ) 25实验与探究( 1)在图 1,2,3 中,给出平行四边形ABCD的顶点ABD, ,的坐标(如图所示),写出图1,2,3 中的顶点C的坐标,它们分别是(5 2),;( 2)在图4 中,给出平行四边形ABCD的顶点ABD, ,的坐标(如图所示),求出顶点C的坐标(C点坐标用含abcdef, , , , ,的代数式表示);归纳与发现( 3)通过对图1,2,3,4 的观察和顶点C的坐标的探究,你会发现:无论平行四边形ABCD处于直角坐标系中哪个位置,当其顶点坐标为()()()()A abB cdC mnD ef,(如图 4)时,则四个顶点的横坐标acme, ,之间的等量关系为; 纵坐标bdnf, , ,之间的等量关系为(不必证明);运用与推广( 4) 在同一直角坐标系中有抛物线2(53)yxcxc和三个点15192222GccScc,(20)Hc,(其中0c)问当c为何值时,该抛物线上存在点P,使得以GSHP, ,为顶点的四边形是平行四边形?并求出所有符合条件的P点坐标yC()A(4 0)D,(12)B ,Ox图 1 yC()A(0)D e ,()B cd,Ox图 2 yC()A ab,()D eb,()B cd,Ox图 3 yC()A ab,()D ef,()Bc d,Ox图 4 图 12 yxPQBCNMOA精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料72xB(0,4) A(6,0) E F xyO 答案:一 二次函数与四边形的形状例 1.解:( 1)令 y=0,解得11x或23xA(-1,0)B(3,0);将 C 点的横坐标x=2 代入223yxx得 y=-3,C (2,-3) 直线 AC 的函数解析式是y=-x-1 ( 2)设 P 点的横坐标为x(-1x2)则 P、E 的坐标分别为:P(x,-x-1),E(2( ,23)x xxP 点在 E 点的上方, PE=22(1)(23)2xxxxx当12x时, PE的最大值 =94(3)存在 4 个这样的点F,分别是1234(1,0),( 3,0),(470),(47,0)FFFF,练 习1. 解 : ( 1 ) 由 抛 物 线 的 对 称 轴 是72x, 可 设 解 析 式 为27()2ya xk把 A、B 两点坐标代入上式,得227(6)0,27(0)4.2akak解之,得225,.36ak故抛物线解析式为22725()326yx,顶点为725(,).26(2)点( , )E x y在抛物线上,位于第四象限,且坐标适合22725()326yx,y0, y 表示点 E到 OA的距离 OA 是OEAF的对角线,2172264()2522OAESSOA yy因为抛物线与x轴的两个交点是(1,0)的( 6,0),所以,自变量x的取值范围是1x6根据题意,当S = 24 时,即274()25242x化简,得271().24x解之,得123,4.xx543211 2 3 4 5 5 4 3 2 1 AEBC1O2l1lxy精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料543211 2 3 D5 5 4 3 2 1 ACEMBC1O2l1lxy故所求的点E 有两个,分别为E1(3, 4), E2(4, 4)点 E1(3, 4)满足 OE = AE,所以OEAF是菱形;点 E2(4, 4)不满足 OE = AE,所以OEAF不是菱形当 OA EF,且 OA = EF 时,OEAF是正方形,此时点E的坐标只能是( 3, 3)而坐标为( 3, 3)的点不在抛物线上,故不存在这样的点E,使OEAF为正方形练习 2.解: (1)由题意知点C的坐标为(34),设2l的函数关系式为2(3)4ya x又点(10)A ,在抛物线2(3)4ya x上,2(13)40a,解得1a抛物线2l的函数关系式为2(3)4yx(或265yxx)( 2)P与P始终关于x轴对称,PP与y轴平行设点P的横坐标为m,则其纵坐标为265mm,4OD,22654mm,即2652mm 当2652mm时 , 解 得36m 当2652mm时 , 解 得32m当点P运动到(36 2),或(36 2),或(322),或(322),时,P POD,以点DOPP, , ,为顶点的四边形是平行四边形(3)满足条件的点M不存在理由如下:若存在满足条件的点M在2l上,则90AMB,30BAM(或30ABM),114222BMAB过点M作MEAB于点E,可得30BMEBAM112122EBBM,3EM,4OE点M的坐标为(43),但是,当4x时,246451624533y不存在这样的点M构成满足条件的直角三角形练习 3. 解 (1)点( 4 0)A,点( 2 0)B,点(0 8)E,关于原点的对称点分别为(4 0)D,(2 0)C,(08)F, 设抛物线2C的解析式是精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料2(0)yaxbxc a,则16404208abcabcc,解得168abc,所以所求抛物线的解析式是268yxx(2)由( 1)可计算得点( 31)(31)MN,过点N作NHAD,垂足为H当运动到时刻t时,282ADODt,12NHt根据中心对称的性质OAODOMON,所以四边形MDNA是平行四边形所以2ADNSS所以,四边形MDNA的面积2(82 )(12 )4148Stttt 因为运动至点A与点D重合为止,据题意可知04t所以,所求关系式是24148Stt,t的取值范围是04t( 3)781444St,(04t)所以74t时,S有最大值814提示:也可用顶点坐标公式来求( 4)在运动过程中四边形MDNA能形成矩形由 (2) 知四边形MDNA是平行四边形, 对角线是ADMN, 所以当ADMN时四边形MDNA是矩形所以ODON所以2222ODONOHNH所以22420tt解之得126262tt,(舍)所以在运动过程中四边形MDNA可以形成矩形,此时62t点评 本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。二二次函数与四边形的面积例 1. 解: (1)解法一:设)0(2acbxaxy,任取 x,y 的三组值代入,求出解析式2142yxx=+-,令 y=0,求出124,2xx= -=;令 x=0,得 y=-4 , A、B、C三点的坐标分别是A(2,0) ,B(-4 ,0) ,C(0, -4) . 解法二:由抛物线P过点(1 ,-52) ,(-3 ,52-)可知,抛物线 P的对称轴方程为x=-1 ,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料又 抛物线 P过(2 ,0)、(-2 ,-4) ,则由抛物线的对称性可知,点 A、B、C的坐标分别为 A(2 ,0) ,B(-4 ,0) ,C(0,-4) . ( 2)由题意,ADDGAOOC=,而 AO=2 ,OC=4 ,AD=2-m ,故 DG=4-2m ,又BEEFBOOC=,EF=DG ,得 BE=4-2m , DE=3m,DEFGs=DG DE=(4-2m) 3m=12m-6m2 (0 m 2) . 注:也可通过解RtBOC及 RtAOC ,或依据 BOC 是等腰直角三角形建立关系求解. (3) SDEFG=12m-6m2 (0 m 2) ,m=1时,矩形的面积最大,且最大面积是6 . 当矩形面积最大时,其顶点为D(1,0) ,G(1,-2) ,F(-2 ,-2) ,E(-2 ,0) ,设直线 DF的解析式为y=kx+b,易知, k=23,b=-23,2233yx=-,又可求得抛物线P的解析式为:2142yxx=+-,令2233x-=2142xx+-,可求出3611x. 设射线 DF与抛物线P相交于点N ,则 N的横坐标为1613-,过 N作 x 轴的垂线交x 轴于 H,有FNHEDFDE=161233-=5619-+,点 M不在抛物线P上,即点 M不与 N重合时,此时k 的取值范围是k5619-+且 k0. 说明:若以上两条件错漏一个,本步不得分. 若选择另一问题:(2) ADDGAOOC=,而 AD=1 ,AO=2 ,OC=4 ,则 DG=2 ,又FGCPABOC=, 而 AB=6 ,CP=2 ,OC=4 ,则 FG=3 ,DEFGs=DG F G=6. 练习 1. 解:利用中心对称性质,画出梯形OABC 1 分A,B,C三点与M,N,H分别关于点O中心对称,A(0,4),B(6,4),C(8,0) 3 分(写错一个点的坐标扣1 分)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料( 2)设过A,B,C三点的抛物线关系式为,抛物线过点A(0,4),则抛物线关系式为 4 分将B(6,4),C(8,0)两点坐标代入关系式,得 5 AB,垂足为G,则 sinFEG sinCAB分解得 6 分所求抛物线关系式为: 7 分(3)OA=4,OC=8,AF=4m,OE=8m 8 分OA(AB+OC)AFAGOEOFCEOA( 0 4) 10 分 当时,S的取最小值又 0m4,不存在m值,使S的取得最小值 12 分精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料(4)当时,GB=GF,当时,BE=BG 14 分练习 3.解 (1)当01x时,2APx,AQx,212yAQ APx,即2yx( 2)当12ABCDABPQSS正方形四边形时,橡皮筋刚好触及钉子,22BPx,AQx,211222222xx,43x( 3)当413x时,2AB,22PBx,AQx,2223222AQBPxxyABx,即32yx作OEAB,E为垂足当423x时,22BPx,AQx,1OE,BEOPOEAQySS梯形梯形12211122xx32x,即32yx90180POQ或180270POQ( 4)如图所示:练习 4.解 (1)设 l2的解析式为y=ax2+bx+c(a0), l1与 x 轴的交点为A(-2,0),C(2,0),顶点坐标是 (0,- 4),l2与 l1关于 x 轴对称,l2过 A(- 2,0),C(2,0),顶点坐标是 (0,4),420,420,4.abcabcc a=- 1,b=0,c=4,即 l2的解析式为y= - x2+4 . (还可利用顶点式、对称性关系等方法解答) (2) 设点 B(m,n)为 l1:y=x2- 4 上任意一点,则n= m2-4 (* ). 四边形 ABCD 是平行四边形,点A、C 关于原点 O 对称, B、D 关于原点 O 对称, 点 D 的坐标为 D(-m,- n) . 由 (*)式可知,- n=-( m2- 4)= -(-m)2+4,即点 D 的坐标满足y= - x2+4, 点 D 在 l2上. (3) ABCD 能为矩形 . 过点 B 作 BHx 轴于 H,由点 B 在 l1:y=x2- 4 上,可设点B 的坐标为(x0,x02- 4),321O12xy43精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 11 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料则 OH=| x0|,BH=| x02-4| . 易知,当且仅当BO= AO=2 时,ABCD 为矩形 . 在 RtOBH 中,由勾股定理得,| x0|2+| x02- 4|2=22,(x02- 4)( x02- 3)=0, x0= 2(舍去 )、x0= 3 . 所以,当点B 坐标为 B( 3 ,- 1)或 B(-3 ,- 1)时,ABCD 为矩形,此时,点D 的坐标分别是D(-3 ,1)、D( 3 ,1). 因此,符合条件的矩形有且只有2 个,即矩形ABCD 和矩形 AB CD . 设直线 AB 与 y 轴交于 E ,显然, AOE AHB,EOAO= BHAH,1223EO. EO=4- 23 . 由该图形的对称性知矩形ABCD 与矩形 ABCD 重合部分是菱形,其面积为S=2S ACE=212AC EO =2 12 4 (4-23 )=16 - 8 3 . 三二次函数与四边形的动态探究例 1.解:(1)由已知 PB 平分 APD,PE 平分 OPF,且 PD、PF 重合,则 BPE=90 OPE APB=90 又 APBABP=90 , OPE=PBA RtPOERtBPAPOBAOEAP即34xyx y=2114(4)333xxxx(0 x4)且当 x=2 时, y 有最大值13(2)由已知, PAB、POE 均为等腰三角形,可得P(1,0),E(0,1),B(4,3)设过此三点的抛物线为y=ax2bxc,则1,0,1643.cabcabc1,23,21.abcy=213122xx(3)由(2)知 EPB=90 ,即点 Q 与点 B 重合时满足条件直线 PB 为 y=x1,与 y 轴交于点 (0, 1)将 PB 向上平移 2 个单位则过点E(0,1),该直线为y=x1由21,131,22yxyxx得5,6.xyQ(5,6)故该抛物线上存在两点Q(4,3)、(5,6)满足条件例 2.解:( 1)解方程 x210 x160 得 x12,x281 分点 B 在 x 轴的正半轴上,点C 在 y 轴的正半轴上,且OBOC精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料点 B 的坐标为( 2,0),点 C 的坐标为( 0,8)又抛物线yax2bxc 的对称轴是直线x2 由抛物线的对称性可得点A 的坐标为( 6,0)4 分(2)点 C(0,8)在抛物线yax2 bxc 的图象上c8,将 A( 6,0)、 B(2,0)代入表达式,得解得所求抛物线的表达式为yx2 x87 分( 3)依题意, AEm,则 BE8m,OA6,OC8, AC10 EFACBEFBAC即 EFFG8m SSBCESBFE(8m) 8(8m)( 8m)(8m)( 88m)(8m)mm2 4m 10 分自变量 m 的取值范围是0m811 分(4)存在理由: Sm24m(m4)28且0,当 m4 时, S有最大值, S最大值 812 分m4,点 E 的坐标为( 2,0) BCE 为等腰三角形14 分精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料(以上答案仅供参考,如有其它做法,可参照给分)例 3 解: (1)相等理由是:因为四边形ABCD 、EFGH 是矩形,所以,EGHEGFECNECPCGQCGMSSSSSS所以,EGHECPCGMEGFECNCGQSSSSSS即:SS( 2)AB3,BC4,AC5,设 AEx,则 EC5x,34(5),55PCxMCx所以12(5)25SPC MCxx,即21212(05)255Sxxx配方得:2125()3252Sx,所以当52x时,S有最大值 3 (3)当 AEAB3 或 AEBE52或 AE3.6 时,ABE是等腰三角形练习 1 解:( 1)点 M1 分( 2)经过 t 秒时,NBt,2OMt则3CNt,42AMtBCA=MAQ=453QNCNt1PQt11(42 )(1)22AMQSAM PQtt22tt2219224Sttt02t 当12t时, S的值最大( 3)存在 设经过 t 秒时,NB=t,OM= 2t 则3CNt,42AMtBCA=MAQ=45若90AQM,则PQ是等腰 RtMQA底边MA上的高PQ是底边MA的中线12PQAPMA11(42 )2tt12t点M的坐标为( 1,0)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 14 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料若90QMA,此时QM与QP重合QMQPMA142tt1t点M的坐标为( 2,0)练习 2.解:( 1)()ecd,()cead,( 2)分别过点ABCD, , ,作x轴的垂线,垂足分别为1111ABCD,分别过AD,作1AEBB于E,1DFCC于点F在平行四边形ABCD中,CDBA,又11BBCC,180EBAABCBCFABCBCFFCDEBAFCD又90BEACFD,BEACFDAFDFac,BECFdb设()C xy,由exac,得xeca由yfdb,得yfdb()C ecafdb,(3)mcea,ndfb或mace,nbdf(4)若GS为平行四边形的对角线,由(3)可得1( 2 7 )Pcc,要使1P在抛物线上,则有274(53)( 2 )ccccc,即20cc10c(舍去),21c此时1( 2 7)P,若SH为平行四边形的对角线,由(3)可得2(32 )Pcc,同理可得1c,此时2(3 2)P,若GH为平行四边形的对角线,由(3)可得(2 )cc,同理可得1c,此时3(12)P,综上所述, 当1c时,抛物线上存在点P,使得以GSHP, ,为顶点的四边形是平行四边形符合条件的点有1( 2 7)P,2(3 2)P,3(12)P,练习 3.解:由 RtAOB RtCDA得OD=2+1=3,CD=1 C 点坐标为 (3,1), 抛物线经过点C, 1= (3)2 a(3) 2,21a。yC()A ab,()D ef,()B cd,EF1B1A1C1DOx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 15 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料抛物线的解析式为221212xxy. 在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ 是正方形。以 AB 边在 AB 右侧作正方形ABPQ 。过 P 作 PEOB 于 E,QGx 轴于 G,可证 PBEAQG BAO , PEAG BO2,BEQGAO1, P 点坐标为( 2,1),Q 点坐标为( 1,1)。由( 1)抛物线221212xxy。当 x2 时, y1,当 x,1 时, y 1。P、Q 在抛物线上。故在抛物线(对称轴的右侧)上存在点P(2,1)、 Q(1, 1),使四边形ABPQ 是正方形。另解:在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ 是正方形。延长 CA 交抛物线于Q,过 B 作 BPCA 交抛物线于P,连 PQ,设直线 CA 、BP 的解析式分别为y=k1x+b1, y=k2x+b2, A( 1,0), C( 3,1), CA 的解析式2121xy,同理 BP 的解析式为2121xy,解方程组2212121212xxyxy得 Q 点坐标为( 1,1),同理得P 点坐标为( 2,1)。由勾股定理得AQ BPAB5,而 BAQ 90,四边形 ABPQ 是正方形。故在抛物线(对称轴的右侧)上存在点P(2,1)、 Q(1, 1),使四边形 ABPQ 是正方形。另解:在抛物线(对称轴的右侧)上存在点P、Q,使四边形ABPQ 是正方形。如图,将线段CA 沿 CA 方向平移至AQ, C( 3,1)的对应点是A( 1,0), A( 1,0)的对应点是Q(1,1),再将线段AQ 沿AB 方向平移至BP,同理可得P(2,1)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 16 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料 BAC 90, ABAC 四边形 ABPQ 是正方形。经验证P(2,1)、Q(1,1)两点均在抛物线221212xxy上。结论AGBGAFBF成立,证明如下:连EF,过 F作 FM BG交 AB的延长线于M ,则 AMF ABG ,AGBGAFMF。由知 ABC是等腰直角三角形, 1 245。 AF AE , AEF 145。 EAF 90, EF是 O的直径。 EBF 90。 FM BG , MFB EBF 90, M 245, BFMF ,AGBGAFBF二次函数与三角形精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 17 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料1、 如图,已知二次函数y=ax2+bx +8(a0)的图像与x 轴交于点A(-2,0), B,与 y轴交于点 C,tanABC=2(1)求抛物线的解析式及其顶点D 的坐标;(2)设直线 CD 交 x 轴于点 E在线段 OB 的垂直平分线上是否存在点P,使得经过点P的直线PM 垂直于直线CD,且与直线OP 的夹角为 75 ?若存在, 求出点 P 的坐标;若不存在,请说明理由;(3)过点 B 作 x 轴的垂线, 交直线 CD 于点F,将抛物线沿其对称轴向上平移,使抛物线与线段EF 总有公共点试探究:抛物线最多可以向上平移多少个单位长度?2、如图,抛物线233ymxmx(m0)与 y 轴交于点C,与 x 轴交于 A 、B 两点,点 A 在点 B 的左侧,且1tan3OCB(1)求此抛物线的解析式;(2)如果点 D 是线段 AC 下方抛物线上的动点,设D 点的横坐标为x,ACD 的面积为 S,求 S与 x 的关系式,并求当S最大时点D 的坐标;(3)若点 E 在 x 轴上,点 P在抛物线上,是否存在以A、 C、E、P 为顶点的平行四边形?若存在求点P 坐标;若不存在,请说明理由3、已知:如图,在EFGH中,点 F的坐标是( -2,-1), EFG=45 (1)求点 H的坐标 ; (2)抛物线1C经过点 E、G、H, 现将1C向左平移使之经过点F,得到抛物线2C,求抛物线2C的解析式;(24 题图)(备用图 ) 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 18 页,共 25 页 - - - - - - - - - - 学习资料收集于网络,仅供学习和参考,如有侵权,请联系网站删除学习资料xyOHGFE(3)若抛物线2C与 y 轴交于点A,点 P在抛物线2C的对称轴上运动请问:是否存在以 AG 为腰的等腰三角形AGP?若存在, 求出点 P 的坐标; 若不存在, 请说明理由4、 . 如图,设抛物线 C1:512xay, C2:512xay,C1与 C2的交点为A, B,点 A的坐标是)4, 2(,点 B 的横坐标是 2. (1)求a的值及点 B 的坐标;(2)点D在线段 AB 上,过D作x轴的垂线 ,垂足为点 H, 在DH 的右侧作正三角形DHG. 过C2顶点的直线记为l,且l与x轴交于点 N. 若l过DHG 的顶点 G,点 D 的坐标为(1, 2),求点 N 的横坐标; 若l与 DHG 的边 DG相交 ,求点N的横坐标的取值范围. 5、 如图,抛物线2(0)yaxbxc a与y轴相交于点C, 直线1L经过点 C且平行于x轴,将1L向上平移 t 个单位得到直线2L,设1L与抛物线的交点为C、D,2L与抛物线的交点为 A、B,连接 AC、BC. (1)当12a,32b,1c,2t时,探究 ABC的形状,并说明理由;(2)若 ABC为直角三角形,求t 的值(用含a的式子表示);(3)在( 2)的条件下,若点A关于y轴的对称点A 恰好在抛物线F的对称轴上,连接 AC,BD ,求四边形ACDB的面积(用含a的式子表

    注意事项

    本文(2022年二次函数的动点问题.pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开