2022年二次根式知识点整理.pdf
二次根式的知识点汇总知识点一:二次根式的概念形如()的式子叫做二次根式。注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根, 所以是为二次根式的前提条件,如,等是二次根式, 而,等都不是二次根式。知识点二:取值范围1.二次根式有意义的条件:由二次根式的意义可知,当a0 时,有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。2.二次根式无意义的条件: 因负数没有算术平方根, 所以当 a0 时,没有意义。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 7 页 - - - - - - - - - - 知识点三:二次根式()的非负性()表示 a 的算术平方根,也就是说,()是一个非负数,即0()。注:因为二次根式()表示 a 的算术平方根,而正数的算术平方根是正数,0 的算术平方根是 0,所以非负数()的算术平方根是非负数,即0(),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若,则 a=0,b=0;若,则 a=0,b=0;若,则 a=0,b=0。知识点四:二次根式() 的性质()文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。注:二次根式的性质公式()是逆用平方根的定义得出的结论。上面的公式也可以反过来应用: 若, 则, 如:,. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 7 页 - - - - - - - - - - 知识点五:二次根式的性质文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。注:1、化简时,一定要弄明白被开方数的底数a 是正数还是负数,若是正数或0, 则等于 a 本身,即;若 a 是负数,则等于 a 的相反数 -a,即;2、中的 a 的取值范围可以是任意实数,即不论 a 取何值,一定有意义;3、化简时,先将它化成,再根据绝对值的意义来进行化简。知识点六:与的异同点1、不同点:与表示的意义是不同的,表示一个正数 a 的算术平方根的平方,而表示一个实数 a 的平方的算术平方根;在中,而中 a 可以是正实数, 0,负实数。但与都是非负数,即精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 7 页 - - - - - - - - - - ,。因而它的运算的结果是有差别的,而2、相同点:当被开方数都是非负数,即时,=;时,无意义,而. 知识点七:同类、最简二次根式(1)定义:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫同类二次根式。注:判断几个二次根式是否为同类二次根式,关键是先把二次根式准确地化成最简二次根式,再观察它们的被开方数是否相同。(2)合并同类二次根式: 合并同类二次根式的方法与合并同类项的方法类似,系数相加减,二次根号及被开方数不变。(3) 最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 7 页 - - - - - - - - - - 1. 与不是同类二次根式的是(a0,b0)()A. B. C. D. 2. 最简二次根式与是同类二次根式,则x 等于()A. 0 B. 1 C. 2 D. 33. 已知,则化为最简二次根式是()A. B. C. D. 4. 在下列二次根式,中最简二次根式有 _ 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 7 页 - - - - - - - - - - 知识点八.二次根式的加减(1)二次根式的加减,先把各个二次根式化成最简二次根式,再将同类二次根式分别合并。(2)二次根式的加减法与多项式的加减法类似,首先是化简,在化简的基础上去括号再合并同类二次根式,同类二次根式相当于同类项。一般地,二次根式的加减法可分以下三个步骤进行: i )将每一个二次根式都化简成最简二次根式 ii)判断哪些二次根式是同类二次根式,把同类二次根式结合成一组 iii)合并同类二次根式精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 7 页 - - - - - - - - - - 知识点九 . 二次根式的混合运算二次根式的混合运算可以说是二次根式乘法、除法、加、减法则的综合应用,在进行二次根式的混合运算时应注意以下几点:(1)观察式子的结构,选择合理的运算顺序,二次根式的混合运算与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号先算括号内的。(2)在运算过程中,每个根式可以看作是一个“单项式”,多个不同类的二次根式的和可以看作是“多项式”。(3)观察式中二次根式的特点,合理使用运算律和运算性质,在实数和整式中的运算律和运算性质,在二次根式的运算中都可以应用。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 7 页 - - - - - - - - - -