2022年港口水工建筑物.docx
精品学习资源第一章码头结构型式和荷载1、码头由哪些部分组成?各部分主要作用是什么?码头由主体结构和码头设备两部分组成;主体结构包括上部结构、下部结构和基础;上部结构作用 : a.直接承担船舶荷载和地面使用荷载,并将这些荷载传给地基;b.作为设置防冲设施、系船设施、工艺设施和安全设施的基础;c.将下部结构的构件连成整体;下部结构作用 : a.支承上部结构,形成直立岸壁;b.将作用在上部结构和本身上的荷载传给地基;基础作用 :承接码头上部、下部结构荷载;扩散应力;防止冲刷;码头设备作用 :用于船舶系靠和装卸作业;2、码头按结构型式分类有那些型式、优缺点,按断面型式分、正确适用条件? 按结构型式分 :重力式码头、板桩码头、高桩码头、混合式码头重力式码头的工作原理:依靠结构本身和其上部结构的重量维护自身的稳固性;重力式码头的优点 是:耐久性好,能抗击大船、漂浮物的撞击,对超载、工艺变化适应才能最强;缺点是 :自重大, 波浪反射严峻,泊稳条件差,地基应力大,一般须作抛石基床;适用条件 :地质条件较好的地基板桩码头工作原理:依靠板桩入土部分的侧向土抗力和安设在板桩上部的锚碇结构来维护稳固;板桩码头的优点 :耐久性好(相对),结构简洁,材料用量少,便于预制,施工便利,可以先打桩,后挖墙前港池, 能大量削减土方量;缺点是 :耐久性差,波浪反射严峻,泊稳条件差,对钢板桩需实行防锈措施,增加费用,对开挖超深反应敏锐(应预留0.5m); 适用条件: 能打板桩的地基,万吨级以下的泊位,适用于有爱护的海港;高桩码头工作原理:通过桩台将作用在码头上的荷载经桩基传给地基;高桩码头的优点 :波浪反射小,泊稳条件好;砂、石用量少;对挖泥超深适应才能强;缺点是 :耐久性差,码头构件易损坏,损坏后修理比较麻烦;对地面超载、工艺变化的适应才能差;水平承载才能低,须设叉桩(大直径管柱例外);码头按断面型式分 :直立式 :水位变化不大的港口;斜坡式 :试用于水位变化较大的情形;半直立式 :高水位时间较长而低水位时间较短 ; 半斜坡式 :枯水位时间较长而高水位时间较短;3、作用的分类有那些?作用的标准值如何确定?( 1)作用的分类, a.按时间变异分:永久作用、可变作用、偶然作用永久作用 :在设计基准期内,其量值随时间的变化与平均值相比可忽视不计的作用,如自重力,预加应力,土重力, 永久作用引起的土压力等;可变作用: 在设计基准期内,其量值随时间的变化与平均值相比不行忽视不计的作用,如堆货,流淌起重运输机械, 可变作用引起的土压力,船舶荷载,波浪力等;偶然作用 :在设计基准期内,不肯定显现,但一旦显现其量值很大且连续时间很短的作用,如地震作用;b.按空间位置变化分:固定作用和自由作用固定作用: 在结构上具有固定分布的作用,如自重力等;自由作用 :在结构的肯定范畴内可以任意分布的作用,如堆货,流淌机械c.按结构的反应分:静态作用和动态作用静态作用: 加载过程中产生的加速度可以忽视不计的作用,如自重力,土压力等;动态作用: 加载过程中产生的加速度不行忽视不计的作用,如船舶的撞击力,汽车荷载等;( 2) 作用标准值的确定方法:第一依据观测到的作用数据,按概率统计的方法确定其概率模型;然后依据对结构的不利状态选取在建筑物设计基准期内作用最大(或最小)值的概率分布的某一分位值;4、作用效应组合的原就是什么?( 1)对实际有可能同时显现在建筑物上的各种作用,应按其可能形成最不利的组合效应进行组合;( 2)对受水位变化有影响的建筑物,在作用组合时应把水位作为一个组合条件;( 3)对于不同的运算工程,应分别按各自的最不利情形进行组合;5、堆货的影响因素 :码头用途;装卸及码头堆码工艺;货种和包装方式;堆货批量,堆存期;码头断面形式;治理欢迎下载精品学习资源水平确定堆货荷载时应考虑以下主要因素:装卸及码头堆码工艺:不同货物,其堆存的极限高度不一样;即使是同一种货物,由于所用装卸工艺不同,其堆货荷载值也不相同;货种和包装方式货物批量和堆存期:小批、暂时,小堆,利于货物的转运;大批、堆存期较长,大堆,提高库场利用率;码头结构型式:不同结构型式的码头,对堆货荷载反应的敏锐程度不同;治理水平:治理严格堆存有序库场利用率高,不会显现超载;堆货分区 :码头前沿地带、前方堆场、后方堆场6、门机荷载的取值原就:( 1)单机作用主要考虑三种工作状态下的支腿、竖向荷载(2)两台门机作业一般只考虑状态 1,且两台门机的最小距离为1.5m( 3)不考虑门机荷载的冲击系数;4 门机荷载作用下,运算土压力时,应将门机荷载换算成等代线荷载: Pm=Pi/2l 1+2l 07、火车荷载的取值原就及加载规定:、港内铁路荷载通常按“中华人民共和国铁路标准荷载”即“中活载”取代实际机车和车辆轮压进行设计,一般活载一般对大跨度结构起掌握作用,特种活载一般对小宽度(小于35m )结构起掌握作用;、“中活载”是轴压,运算轮压要除2、铁路机车在码头上行驶一般不考虑冲击力,离心力,制动力;、对直接承担铁路荷载的结构和构件(如梁,单向板,轨枕),港口铁路荷载的标准值应将“中活载”分别乘以荷载系数Kt;4、运算铁路荷载产生的土压力时,为便利运算,其竖向运算活载采纳线荷载形式;加载影响线的规定 :( 1)分别用“一般活载”和“特殊荷载”图式加载取最不利者,作为掌握条件;加载时,两种荷载图式均可按最不利情形任意截取其加载荷载的长度.2、对同号不连续区加载,可截取两种荷载图式中任意数量的 荷载加载; 3、对同号连续区,就只能用一种荷载图式加载;8、系缆力、撞击力产生的因素有那些?在运算中主要考虑什么因素,如何运算? 系缆力产生的因素 是:有爱护的海港:系缆力主要有风引起;无爱护的海港:系缆力主要由风、波浪引起;河港:系缆力主要由风、水流、冰等引起;系缆力的取值标准:、运算系缆力标准值不应大于缆绳的破断力;、 Fx、 Fy应依据可能同时显现的风和水流的情形,不应将两者最大值叠加,一般可按最大运算吹开风和可能同时显现的水流来叠加;、运算系缆力的标准值不应低于规范规定的下限值,如低于就取下限值;撞击力产生 : 1、船舶以肯定速度靠向码头,此撞击力是一般高桩码头和墩柱码头的一项设计荷载;2.系泊中船舶受横向波浪作用,此撞击力为外海开敞式码头的主要设计荷载;挤靠力 : 1 系泊于码头的船舶受到风、水流和波浪共同作用;2 船舶离开码头时,在甩尾过程中,船首对码头的挤压;9、库仑、朗肯理论的适用条件是什么?各种情形下土压力如何运算? 库仑公式是依据滑动土楔体的受力平稳条件推导出来的;库仑理论适用条件:、适用于无粘性土,不适用于粘性土;、适用于地面倾斜或水平,墙背倾斜或垂直的陡墙,不适用于坦墙、适用于墙背粗糙或光滑,即 或 =;朗肯公式是以微分体极限应力状态理论推导出来的朗肯理论假定: 土体为半无限弹性体,滑动楔体内土体每一点均达到塑性极限平稳状态;朗肯理论适用条件:、适用于粘性土( C)及砂性土( C=0 );、适用于地面水平,墙背垂直且光滑;欢迎下载精品学习资源10、推导杨森公式,运算储仓压力;杨森公式假设: 填料不行压缩,任意深度y 处的垂直压力 qy 均布仓无限深,即不考虑仓底的影响;微元体平稳方程:qyS+rSdy-Sqy+dqy-fqxUdy=0整理得: dy=dqy/r-fkUqy/Sdq y欢迎下载精品学习资源ydyrfkUq y / S欢迎下载精品学习资源依据边界条件: y=0,q y=q;并令 A=kUf/S , 1-m=e-yA可得: qy=rm/A+1-mq ,就 qx=kq y如: q=0,就 qy=rm/A=r1- e-yA/A,即为规范附录公式;见书 P4311、什么叫地震荷载,考虑地震荷载的一般规定是什么?地震荷载有那些?答:在地震过程中,振动体本身产生振动惯性力,它包括建筑物自重的惯性力和动土压力、动水压力,统称为地震作用,即地震荷载;抗震设计的一般原就、地震设计除了震中地区烈度为8,9 度以外,一般只考虑横向水平力,不考虑竖向力;、地震烈度小于7 度地区,对水工建筑物一般不作抗震设计,但应按规范适当实行抗震构造措施;、抗震设计以基本烈度作为设计烈度;基本烈度为考虑在肯定时期内有可能显现的最大烈度,由国家地震局普查而得中国地震烈度区划图、应把地震荷载作为特殊荷载和其它荷载进行组合,组合按抗震规范进行;其次章重力式码头1、重力式码头的组成部分及各部分的作用式什么? . 胸墙和墙身 :是重力式码头的主体结构;构成直立墙面;挡土、承担并传递外力;连成整体;固定、安装码头设备; .基础 :扩散、减小地基应力,降低码头沉降;爱护地基不受淘刷;整平地基,安装墙身;. 墙后回填:形成地面;减小土压力(主要指抛石棱体,倒滤层);防止水土流失;.码头设施 :靠船设施和系船柱等,削减船舶对码头的撞击和供船舶系靠,便于装卸作业;2、重力式码头建筑物的结构形式主要打算于墙身结构及施工方法;重力式码头基础的型式及其适用条件:基础型式打算于地基土的性质、码头建筑物的结构形式和施工方法; 、岩基:岩石地基本身牢固、承载力大、地基沉降量小,一般不需要做基础,而仅进行适当处理;现浇砼和浆砌石结构可不作基础整平,可把岩基面凿成阶梯形断面,最低一层台阶宽度 1m, 1:10 倒坡;对预制结构(易倾斜),须用二片石和碎石整平,厚度 0.3m 、非岩石地基: 一般需要做基础;( 1)对水下安装预制结构,一般做抛石基石床; 干地施工的现浇砼和浆砌石结构地基承载力不足时,要设置基础,如块石基础,钢筋砼基础或桩基等; 如地基承载力足够,可不作基础,但应满意构造要求:a、在墙下铺 10 20cm 厚的贫质砼垫层,保证墙身施工质量;b、埋置深度 0.5m,考虑挖泥超深;c、如码头前有冲刷,就基础埋深大于冲刷深度,或采纳护底措施;( 3 )对脆弱地基,可采纳桩基或其他加固地基做基础;a、强夯加固; b、堆载或真空预压加固;c、深层水泥搅拌CDM 加固软基;3、抛石基床的作用,型式、适用条件是什么?基槽底宽如何确定?抛石基床的作用: 扩散、减小地基应力,降低码头沉降爱护地基不受淘刷;整平地基,安装墙身;欢迎下载精品学习资源( 1) 基床型式 :明基床,暗基床,混合基床a.暗基床:用于原地面水深小于码头设计水深;b.明基床:用于原地面水深大于码头设计水深,且地基条件较好;c.混合基床:用于原地面水深大于码头设计水深,但地基条件较差 如有23m 污泥层 ,挖除后抛石或换砂,成混合基床;( 2) 暗基床基槽的宽度可依据基床应力扩散的范畴确定,但不小于建筑物底宽加两倍基床厚度;基槽底边线距墙底前趾与后趾的距离应依据码头建筑物的受力来确定;4、抛石基床顶面要预留沉降量缘由:保证建筑物在答应沉降范畴内正常工作,在抛石基床顶面要预留沉降量;要求 :对于夯实的基床,夯实后基床本身已相当密实,基床顶面的沉降主要是地基沉降引起的,设计时只按地基沉降量预留;对于不打夯的基床,除预留地基沉降量外,尚应预留由于基床压缩产生的沉降量5、重力式码头设置变形缝缘由:为了减小由于不匀称沉降和温度变化在结构内产生的附加应力位置 :( 1)设在新旧建筑物连接处,(2)码头水深和结构型式转变处,(3)沿码头岸线地基土质差别较大处,(4 )基床厚度突变处,( 5)沉箱接缝处;6、胸墙有何要求?其底部高程怎样确定?( 1) 胸墙总体要求: 有足够的强度和稳固性;有牢靠的耐久性;便于船舶系靠和装卸作业;施工便利;造价低;( 2) 胸墙底部高程的确定:胸墙的一个重要功能是将墙身的构件连为一体,故应尽量放低,以增加胸墙的稳固性、强度和足够的刚度;但对现浇或现砌的胸墙,底高程不得低于施工水位;施工水位: 即混凝土的现浇水位;它依据施工队伍的机具、组织才能、混凝土浇注量和水位变化情形来确定;定义:为了现浇(砌)如干节点(胸墙,桩帽),低于该节点底面的水位在水位过程线上显现的时间为h,施工单位依据自有的机具设备、组织才能等,能保证在该时间段内能完成的现浇任务;7、图示墙后抛石棱体的几种型式:( 1) 三角形 :以防止回填土流失为主,减压成效较差,抛填料量最少;(2)梯形、锯齿形 :以减压为主,兼防止回填土流失;锯齿形与梯形相比在减压成效相同的情形下,节约抛石量,但施工工序多,影响工期,质量不易保证;因此,对锯齿形一般不多于二级最多可采纳三级;8、倒虑层作用 :防止墙后回填土流失分层倒滤层由碎石层和“瓜M 石”或粗沙或砾沙层组成,每层厚度不宜小于0.15m,总厚度不宜小于0.40m;倒滤层作用:为了防止墙后回填土流失,在抛石棱体的顶面和坡面,胸墙变形缝后面,以及卸荷板安装缝的顶面与侧面均应设置倒滤层;9、运算土压力填料容重选取原就:地下水位以上采纳自然重度,以下用浮重度;10、地面使用荷载考虑哪几种布置情形,并指出各布置型式的验算内容? 以堆货为例,有三种布置情形:满布均载 :垂直力最大,水平力最大;用于验算基床、地基承载力及建筑物的沉降和整体滑动稳固性;墙后满布均载:垂直力最小,水平力最大;用于运算抗倾、抗滑稳固性;局部均载 :垂直力最大,水平力最小;用于验算基底后踵的应力;11、重力式码头一般运算内容:抗滑,抗倾,地基应力,整体稳固,构件强度一、按承载才能极限状态的长久组合进行运算或验算:1 胸墙、整个码头建筑物和建筑物结构的一部分对其运算面前趾的倾覆稳固性验算2 沿建筑物底面和建筑物各水平缝的抗滑稳固性验算3 沿基床底面的抗滑稳固性验算4 基床和地基承载才能验算5 建筑物整体稳固性验算6 码头建筑物各构件的承载力验算二、按正常使用极限状态长期组合进行运算或验算:1.地基沉降验算建筑物构件裂缝宽度验算三、 按承载才能极限状态短暂组合进行运算或验算:假如有波浪(墙前进行波波高大于1.0m 时),当墙后尚未回填或部分回填时,已安装的下部结构在波浪作用下的稳固性验算;假如有波浪,当胸墙后尚未回填或部分回填时,胸墙、墙身在波浪作用下的稳固性验算;墙后采纳吹填时,已建成部分在水压力和土压力作用下的稳固性验算; 施工期构件承载力验算;四、抗震验算欢迎下载精品学习资源当工程所在地区的地震烈度在7 度以上时,应按承载才能极限状态的偶然组合,对码头建筑物进行以下内容的验算:对胸墙、整个码头建筑物和建筑物结构的一部分运算面前趾的倾覆稳固性验算;沿建筑物底面和建筑物各水平缝的抗滑稳固性验算;沿基床底面的抗滑稳固性验算;重力式码头考虑荷载有那些?重力式码头上的作用按时间变异可分为以下三类: 永久作用:自重(建筑物,固定机械设备),填土产生的土压力;可变作用:地面使用荷载产生的土压力,船舶荷载,施工荷载,冰荷载,波浪力等;偶然作用:地震作用;12、重力式码头在稳固性验算怎样考虑船舶荷载和波浪力?(一)船舶荷载:运算稳固时,可不考虑撞击力、挤靠力;系缆力:Ny 对码头影响不大,不考虑;Nz 数值较小,运算墙身稳固性时可不考虑,但在运算系船块体和胸墙稳固性时应考虑;Nx 验算码头整体和部分稳固性时必需考虑;运算时按各分层沿码头长度方向的分布长度确定;对于阶梯形方块码头:沿墙以45°向下扩散,遇竖缝中止,再从缝底端向下连续扩散;对于扶壁码头:沿墙以45°向下扩散,遇竖缝中止;对于分段长度内为一个整体的码头(如现浇砼和浆砌石码头、沉箱码头等),在验算沿墙底稳固时,以分段长度作为船舶荷载的分布长度;(二)波浪力:波高小于1m 时:不考虑波浪力;波高大于等于1m 时:即使要考虑,也只考虑墙前为波谷情况,即波吸力,墙后按静水位考虑;13、用图说明合力与前趾距离 >B/3 , e<B/6 ; =B/3 , e=B/6 ; <B/3 , e>B/6 时基床应力如何运算?上述情形相应的地基应力如何运算?规范对 和基床应力有什么规定?为什么?答: 过小,会显现应力集中,产生过大的不匀称沉降,甚至显现工程事故;规范:对非岩基, B/4 ,如 <B/4,就应重新拟定结构尺寸;对岩基,由于不行压缩,可不加限制;对抛石基床,承载力设计值一般取600KPa;基床承载力验算:r0× r6× 6max 小于等于 6r14、块体码头断面设计的原就:尽量减小土压力:俯斜墙背,卸荷板,设置抛石棱体尽量使断面重心后移,以增大稳固,减小地基应力:宜采纳衡重式断面,衡重式码头在施工过程重,如墙后未准时回填,存在向后倾覆的危急,为了保证墙在施工重的稳固性荷掌握基底应力分布,应对墙身合力到后趾的距离作限制:对非岩基 :a B/3 ,对应顶宽/ 底宽 1.6;对 岩基 : a B/4 ,对应顶宽 /底宽 1.9在施工许可的情形下,尽量增大块体尺寸,以削减层数和数量;卸荷板的位置应适当低一些,一般卸荷板顶面以放在现浇胸墙的施工水位为宜;15.为什么说采纳俯斜墙、卸荷板和减压棱体结构时有减小土压力作用?俯斜墙背 :衡重式断面的背面为俯斜,从主动土压力公式可以看出,作用在俯斜墙背上的水平主动土压力比作用在垂直和仰斜墙背上的水平主动土压力小;卸荷板 :靠其悬臂部分对其上面填土和地面荷载的遮挡来减小其下面因上部荷载产生的主动土压力,压力削减的多少与卸荷板的位置和悬臂长度有关;减压棱体: 减压棱体的内摩擦角大,相应与 成反比的主动土压力系数就小,故产生的主动土压力亦相应的减小;16、无底空心方块码头抗倾、抗滑稳固验算1抗倾:对无底空心方块码头,由于空心块体的填料与块体壁之间的摩擦力存在,填料有一部分重量直接作用到基床上,而另一部分就是通过块体壁传到基床上(同储仓压力);因此,在运算抗倾稳固性时,应将前者扣除,即将填料起抗倾作用的竖向力标准值按下式扣除:GR=W0-AR Z,然后换算成单宽值; 2抗滑:仍按一般公式运算,但基底与基床间的摩擦系数f 应取综合摩擦系数,可取0.65;17、沉箱码头的接缝形式平接:当墙后设置抛石棱体或全部采纳块石回填时;空腔对接:当墙后不设抛石棱体而全部采纳砂或开山土回填时,腔内设置倒滤层,平均缝宽5cm; ( 3)留意:沉箱接缝的底面防漏;18、 沉箱内设置纵横隔墙作用:为了增大沉箱的刚度,减小立板、底板的运算跨度,从而减小内力;便于封舱板或搭设工作平台; 隔墙上挖孔 :为了节约混凝土、减轻沉箱重量和降低重心(有利于沉箱浮游稳固)欢迎下载精品学习资源19、 沉箱外壁运算时考虑 :吊运下水时可能承担的外力沉箱溜放或漂浮时的水压力沉箱浮运时的水压力和波压力沉箱沉放时的水压力对箱格有抽水要求时的水压力使用期的箱内填料侧压力,波浪力和冰荷载;(二)沉箱底板运算应考虑 沉箱放在基床上的受力情形:基床反力,底板自重力、箱格内填料垂直压力(按“贮仓”垂直压力运算);基床反力应考虑两种情形:使用时期前趾反力最大和施工时期(墙后未回填)后踵反力最大;沉箱漂浮时的受力情形:底板受到相应于沉箱外壁受力情形下的浮托力(对无爱护的海港应考虑波浪的浮托力)和箱内压仓水重力及底板自重力;运算图式:每个箱隔底板按四边固定板运算,趾板按悬臂板运算;21 、翘尾的作用 :减小基床宽度,即削减岸坡的挖、填方量和基床的抛石量;使合力作用点掌握在三分点内,即 >B/3 ,基底应力趋于匀称;肋板间距的确定: 肋板间距与肋板数量有关,须经技术、经济比较加以确定,应依据立板和底板的支座弯矩和跨中弯矩大致相等的原就确定;22、护壁码头接缝及倒滤设施的构造;1、护壁接缝缝宽:护壁间垂直缝设计宽度采纳4 护壁高度,但 4cm;2、倒滤构造(当墙后无抛石棱体时)、立板的悬臂不长:在肋板外侧设置隔砂板;、立板的悬臂较长:在立板后设置隔砂板;、为了防止倒滤井中填料下沉后在胸墙下显现间隙而造成漏砂,应在胸墙底部的后面设置倒滤棱体23、 沉箱沉箱外形尺寸的确定原就:长度或直径:应依据施工设备才能,施工要求的最小尺寸及码头变形缝间距确定;一般相邻变形缝之间设置一个沉箱;宽度:主要由码头建筑物的稳固性和地基承载力确定,同时也要满意浮运吃水,干舷高度和浮游稳固性的要求;如不满意,应尽量从施工上实行措施,如用起重船或浮筒吊护,不得已才考虑增大宽度;高度:顶部高程宜适当放低,但不得低于现浇胸墙的施工水位,同时,如箱内填料采纳船上抛填,就沉箱顶面不宜太高;此外,构造上沉箱要伸入胸墙 30 50cm,以保证整体;护壁沉箱外形尺寸 : 1 高度:由码头水深和胸墙的底标高确定,且不低于胸墙的施工水位,护壁顶端宜嵌入胸墙10cm;2宽度:由结构稳固性和地基承载才能确定;但构造上应满意:前趾长1m;翘尾长底宽/4;翘尾角度 ; 3长度:预制安装时,取决于起重才能,但H/3 ;干地现浇时,取变形缝间距;物体浮游稳固原理:重心:重力作用线通过的中心,C;浮心:浮力作用线通过的中心,随物体水下部分外形而变化,W;定倾中心:浮心运行轨迹的中心, M ;定倾半径:定倾中心道浮心W 的距离, ;定倾高度:定倾中心M 到重心 C 的距离, m;a:重心到浮心的距离;物体浮游稳固三个状态:m= -a>0 重心在定倾中心下方,重力产生稳固力矩,稳固平稳;m= -a=0 重心与定倾中心重合,随遇平稳(临界状态);m= -a<0 重心在定倾中心上方,重力产生倾覆力矩,不稳固;24、分别表达护壁码头的立板、底板、肋板的荷载特点及运算图式?、立板运算1、作用:土压力,地面使用荷载,剩余水压力,波吸力;2、假定:、立板不承担胸墙传来的外力,此外力全部由肋板承担;、不考虑胸墙底宽对土压力的遮挡作用; 除多肋护壁外,不考虑底板对立板的嵌固作用;、一般取设计低水位时,水平力最大的组合;3、运算图式:、单肋:按单宽悬臂板运算;、双肋:按两端悬臂的简支板运算;(3)多肋:同沉箱的外壁运算、底板运算1、作用:基床反力,底板自重,底板上填料垂直压力荷地面使用荷载;基床反力的大小和分布与运算水位,地面使用荷载,船舶荷载等有关,运算情形比较复杂,实际运算一般取设计低水位,按规范进行组合:、无尾护壁:取最大水平力与最大垂直力或最大水平力与最小垂直力两种组合;、有尾护壁:取最大水平力与最欢迎下载精品学习资源小垂直力或最小水平力与最大垂直力两种组合;2、运算图式:内底板与尾板的运算图式同立板(单、双、多),趾板按悬臂板运算;、肋板运算1、作用:立板运算所考虑的作用+胸墙传来的外力,如系缆力和力矩,胸墙上的土压力和力矩;运算一般取设计低水位和相应的水平力最大的组合;2、运算图式:立板与肋板共同构成一个固定在底板上的T 形断面的悬臂梁,因此,肋板按固定在底板上的变截面的T 形梁运算,翼缘宽度按规范确定;25、 大直径圆筒码头的尺度确定原就:1高度:由码头的水深和埋入地基的深度确定;埋入地基的深度由建筑物的稳固性和地基持力层深度打算,一般埋深2.0 5.0m ; 2直径:由码头稳固性及使用要求确定,一般为5 14m;3. 壁厚:由强度运算确定,一般为 25 30cm, D>14m 时,壁厚应适当加厚; 4、其它:、应依据码头稳固和减小基床应力的需要设内趾和外趾(内趾采纳圆环形,外趾采纳折线形),长度 0.5 1.0m,且两者不宜相差过大;、圆筒直接承担船舶荷载或圆筒顶设置轨道梁支撑柱时,应将圆筒上部的壁适当加厚,形成加强圈梁;26、大直径圆筒码头底部构造型式及作用,上部结构与卸荷板型式与作用各是什么?答: 大直径圆筒码头,按基础形式可分为:沉入地基中、直接放在挖出的基槽内、放在抛石基床上;圆筒的上部结构 ,除胸墙外,一般在圆筒顶设置预制的钢筋混凝土盖板,每个圆筒设一块;盖板仍用作胸墙混凝土现场浇注的底模;盖板也可做成前后两块板,前板用作胸墙混凝土现场浇注的底模,后板的作用是将上部的填料重力直接传给筒体,可减小前趾的应力,增大稳固性;27、 大直径圆筒码头填料防漏措施: 1)在圆筒两侧设两个凸耳,凸耳之间形成凹槽;在两相邻的凹槽所形成的空腔内,用水下浇筑混凝土填充,或直接填充碎石2)在两相邻的圆筒之间预留200300mm 的安装缝;在接缝的前后两侧,架设木板或钢模板且用螺栓固定,然后用袋装混凝土填缝;3)在两相邻的圆筒之间填缝的后侧防治梯形断面填 缝条,当圆筒后回填砂料时,填缝条与圆筒之间尚应铺设土工织物;28、大直径圆筒码头的运算特点是什么?除一般重力式码头运算以外,尚应运算圆筒结构的内力和预制胸墙垫板的内力,运算是以单个圆筒为运算单元,而不是以每延 M 为运算单元;1、对一般运算应留意以下几点:、圆筒后面主动土压力,近似按墙背为平面运算, = /3;、抗滑运算,取综合摩擦系数,f=0.65 ,(同无底空心方块)、抗倾运算,(同无底空心方块)基底应力按除应验算大面积应力外,仍应验算前趾的局部应力,在大面积应力验算时,可取墙底运算宽度等于0.8D R, D R 为圆筒底部的外轮廓宽度;2、圆筒结构运算:取1m 高的圆环进行运算29、 重力式码头按墙身结构分类:方块码头,沉箱码头,护壁码头,大直径圆筒码头,格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等; .按墙身结构型式分方块码头沉箱码头:优点:整体性好,抗震才能强,施工速度快,水下工作量少,造价低;缺点:钢材用量大,耐久性不如方块结构,且需特地的预制下水设备;适用:当地有沉箱预制场或工程量较大,工期短的大型码头;护壁码头:优点:结构简洁,施工速度快,节约材料,造价低;缺点:整体性差,耐久性差;适用:有起重运输设备,有预制才能的情形或有干地施工条件;大直径圆筒码头:特点1、钢材、砼用量少,每沿M 材料用量与圆筒直径无关,只与码头高度荷圆筒壁厚有关;2、对地基条件的适应才能比其它重力式码头强3、构造简洁,较受业主欢迎4、圆筒内填料可就地取材;适用条件:地质条件较好的深水码头,如广西防城港D=16m ,或地基表面有不厚但又不薄的软土层的情形;格形钢板桩码头,干地施工的现浇砼和浆砌石码头及混合式结构等; .按施工方法分类: 干地现浇或砌筑的结构;水下安装预制结构第三章板桩码头欢迎下载精品学习资源1、板桩码头的组成部分、类型,各自的优缺点及适用条件板桩码头工作原理:由沉入地的基板桩墙和锚碇系统共同作用来维护其稳固性;板桩码头的组成部分及其作用:1)板桩墙,是板桩码头的最基本的组成部分,是下部打入或沉入地基中的板桩所构 成的连续墙,其作用是挡土并形成码头直立岸壁;2 )拉杆,当码头较高时,墙后土压力较大,为了减小板桩的跨中弯矩(以减小板桩的厚度)和入土深度以及板桩墙顶端向水域方向的位移,应在适当位置设置拉杆,以传递水平荷载给锚碇结构; 3)锚碇结构,承担拉杆拉力;4)导梁,连接板桩荷拉杆的构件,拉杆穿过板桩固定在导梁上,使每根板桩均受到拉杆作用;5)帽梁,作用相当于前面的胸墙,一般现浇;当水位差不大时,可将帽梁和导梁合二为一, 成为胸墙; 6)码头设备,便于船舶系靠和装卸作业;类型 .优缺点及适用条件 :一、按板桩材料分木板桩码头:强度低,耐久性差,木材用量大,现在很少使用;钢筋砼板桩码头:耐久性好,用钢量少,造价低,但强度有限,一般用于中小型码头;钢板桩码头:强度高,重量 轻,止水性好,施工便利,但易腐蚀,耐久性较差,适用于建造水深较大的海港码头,特殊多用于要求不透水的船坞坞墙、施工围堰和防渗围幕等工程中;二、 按锚碇系统分 无锚板桩:结构简洁,只有板桩墙和帽梁两部分;板桩呈悬臂工作状态,承载才能小,墙顶变形大,在码头中一般不用;有锚板桩:当墙高较大时,为了减小板桩的断面尺寸和桩顶位移,而设置拉杆和斜拉桩锚碇;单锚板桩适用于墙高在6 10m 以下的中小型码头;双锚板桩多锚板桩;双锚或多锚:适用于墙高大于10m 的码头,但应用较少;缘由:下拉杆高程较低,施工困难(一般要求水上穿拉杆);上下拉杆的位移很难和谐, 常会使某一拉杆严峻超载;斜拉板桩不设水平拉杆,而增设斜拉桩来锚碇,使锚碇结构至板桩墙的距离大大缩短, 削减了墙后开挖,特殊适用于墙后不能开挖或开挖不经济的情形;但是斜拉桩承担水平力的才能有限,因此多用于中小型码头;三、 按板桩墙结构分类 一般板桩墙:由断面和长度均相同的板桩组成,其优点是板桩类型单一,施工便利;长短板桩结合:在一般板桩墙中,每隔肯定距离,打入一根长板桩,这样既保证了稳固,又降低了造价;适用于土质条件 较差,在较深处才有硬土层的情形;主桩、板桩结合:将长桩的断面加大,成为主桩,以充分发挥长桩的作用,而将短桩的断面减小,成为辅桩,从而构成主桩板桩结合;适用同上;主桩挡板(套板)结合与3 不同的是,它是在主桩后面放置挡板或在主桩之间插放套板来挡土;墙后土压力直接作用在挡板(套板)上,最终全部传给主桩,主桩受力很打,因此适用于水深不大的情形,且要求先开挖港池,以便挡板(套板)的安放;四、 按施工方法分预制沉入板桩地下墙水下砼连续墙:用钻机在地下开沟槽,用水下浇注砼方法形成连续墙;预制板桩成槽沉放:将预制的钢筋砼板桩放在沟槽内,板桩前后用低标号的水泥土浆填满2、钢筋砼矩形板桩的构造型式矩形 T 形组合形 圆形( 2)矩形 , A 特点:外形简洁,制作便利,沉桩容易,接缝简洁处理;但抗弯才能差,费材料;B 、尺寸 :其厚度应依据强度和抗裂要求由运算确定,一般为2050cm,宽度由打桩设备的龙口宽度打算,一般为50 80cm;3 板桩的立面和接缝 :矩形板桩的特点:一侧阴榫拉通,另一侧从桩顶到设计水底以下1m 以上做成阴榫(不得低于设计冲刷水位),1m 以下做成阳榫;设计水底以上断面形成空腔,内填细石砼;顶面30 50cm 范畴内,两侧各缩进24cm,以便桩设替打;底部一侧做成斜面,使得后 一板桩打入时,紧贴前一板桩,接缝严密;4 板桩的配筋,钢筋砼板桩:一般钢筋砼板桩25#,预应力钢筋砼板桩 35#,设计中应尽可能采纳预应力,以增加抗裂性和耐久性;3、锚碇结构常用型式及受力特点?锚碇叉桩及斜拉桩宜布置在板桩主动破裂面以外的目的是什么?型式:、锚碇板(墙):依靠其前面回填料的土抗力来承担拉杆拉力,承载才能较小,水平位移较大;、锚碇桩(板桩):靠桩打入土中嵌固工作,其深度由“踢脚”稳固来确定,此结构属于无锚桩,承载才能较小,水平位移较大;、锚碇叉桩(斜拉桩):靠桩的轴向拉压和拉拔承载力来工作,其稳固性由桩的承载才能确定;4、拉杆的位置在高程上宜选在何处?减小拉杆挠曲及防锈措施?拉杆作用 :减小板桩的跨中弯距,减小入土深度以及板桩墙顶端向水域方向的位移;拉杆的位置在高程上的确定:从减小板桩墙的跨中弯矩来看,拉杆宜放在标高较低处,但为了保证水上穿拉杆和导梁胸墙的施工条件,一般在平均水位以下,设计低水位以上0.5 1.0m ,且不得低于导梁或胸墙的施工水位;减小拉杆挠曲及防锈措施 夯实拉杆下的填土,或在拉杆下设置支撑,以减小沉陷,支撑形式有支撑桩、设砼垫块或垫墩、铺欢迎下载精品学习资源碎石或灰土垫层;在拉杆两端设置连接铰,以排除其附加应力;在拉杆上做个U 形防护罩,使拉杆上面的土重及地面荷载不直接作用载拉杆上,而通过防护罩传到拉杆两侧的地基上;防锈处理,涂两层防锈漆,并用沥青麻袋包裹两层;回填料严禁带有腐蚀性;5、板桩设置排水设施的目的及其构造:为了减小和排除作用在板桩墙上的剩余水压力,板桩墙应在设计低水位以下设置排水孔,孔径5 8cm,孔距 3 5m,孔后设置抛石棱体,以防止填土流失;6 、板桩墙的主要设计荷载有那些?土压力的特点有哪些以及影响因素或缘由是什么?剩余水压力的影响因素有那些?如何考虑此荷载?船舶荷载如何考虑?板桩墙的主要设计荷载、板桩码头上的作用力:永久作用:土体产生的主动土压力,剩余水压力;可变作用:地面可变荷载产生的土压力、船舶荷载、施工荷载、波浪力;偶然作用:地震荷载;板桩墙的稳固性、墙体的强度和拉杆力等值,主要由低水位情形掌握;土压力:板桩墙在外力作用下,墙体将发生弯曲变形;因此,沿墙高各点的水平位移不同;板桩墙上各点的土压力不仅与该点以上的土重、地面可变作用以及土的物理力学性质有关,而且与该点墙体的水平位移亲密相关; 主动土压力特点:呈R 形分布,缘由 :关键是沿墙高位移不同;由于板桩上部有拉杆拉住,下端嵌固于地基中, 上下两端位移较小,跨中位移较大,墙后土体在板桩变形过程中出现拱现象,使跨中一部分土压力通过滑动土条间的摩擦力传向上、下两端;从而是墙后主动土压力产生上下大,中间小的R 外形; 影响板桩墙上各点位移不同而造成墙后主动土压力呈R 形分布的主要因素有:板桩墙的刚度:刚度越小,R 形越显著;锚碇点位移:越小,R 形越显著;施工次序:先打板桩,后开挖比反之更显著 被动土压力的特点 :墙下端扎入地基中,当墙体受侧向力作用后,墙前入土段将产生被动土压力;当入土深度不大时,入土段墙体只显现向前的位移,墙前被动土压力与刚性墙的相像;在板桩墙入土深度较大时,板桩嵌固于地基中,其下端仍产生向后翘;因此;入土段的上部墙产生墙前被动土压力,其下部产生墙后的被动土压力;特点:墙前被动土压力比理论运算值大1 倍左右,而墙后(下端)被动土压力比运算值小一半左右;墙前被动土压力增大的缘由: A 、板桩在水底处发生向下转动变形,使墙前土体受到向下的挤压摩擦力;B、板桩向前变形,压挤墙前土体,使土的密实度增大,抗剪强度提高;C、入土段上部墙体对土体产生向下的摩擦力,使土体的稳固性增大;墙后被动土压力减小的缘由A 、板桩底部被地基嵌固,使板桩下端变形较小,达不到极限被动土压力所需的位移值;B 、板桩底端发生向上转动变形,给墙后土体一个向上的“掘出力”;C、板桩下端与土体产生向上的摩擦力,使土体的稳固性减小;、 剩余水压力 :水压力取决于水位涨落情形、板桩墙排水好坏、回填土及地基土的透水性等;海港钢筋砼板桩码头,当板桩墙设有排水孔,墙后回填粗于细砂颗粒的材料可不考虑;对海港钢板桩码头,地下墙式板桩码头及墙后回填细砂的钢筋砼板桩码头,=1/3 1/2 平均潮差;对河港就依据地下水位按实际情形取定;3 船舶荷载 :只考虑系缆力,不考虑撞