欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高二物理竞赛金属自由电子论课件.pptx

    • 资源ID:12953092       资源大小:3.61MB        全文页数:24页
    • 资源格式: PPTX        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高二物理竞赛金属自由电子论课件.pptx

    物理现象物理现象或实验结果或实验结果物理模型物理模型决定因素决定因素修修改改结果与预言结果与预言验验 证证理论解释理论解释第五章第五章 金属自由电子论金属自由电子论第一阶段、自由电子学说德鲁特和洛伦兹第二阶段、量子自由电子学说F-S电子理论第三阶段、能带理论单电子近似求解电子能谱的理论金属电子认识历史金属电子认识历史M-B分布F-D分布( )EkTf Ece( )exp() 1Fcf EEEkT1.自由电子学说:自由电子学说:(德鲁特和洛伦兹) 金属原子通过键合组成晶体时,价电子脱离相应原子的束缚,在金属中自由运动,如理想气体,服从M-B统计规律。 成功之处成功之处:金属导电率和热导率关系: Wiedemann-Franz定律: / = LT ,L:洛伦兹数( TD) 缺点缺点:1、霍尔系数“反常”现象, 2、电子平均自由程 exp th, 3. Xe1/T,其实无关, 4、电子比热:Cexp = Cth/100,5、材料的巨大差别。 此理论有可取之处,是因为抓住了金属中电子“自由”这一主要矛盾。存在的问题预示着金属中实际运动的电子比M-B预言的少得多。讨论固体中电子的运动,从金属开始,推广到半导体和绝缘体。2. 量子自由电子学说自由电子学说(F-S理论) : 价电子也是自由的但服从Fermi-Dirac量子统计,通过薛定谔方程求解自由电子的运动波函数,计算其能量。3. 能带理论能带理论: 在量子自由电子学说基础上考虑了晶体原子的周期势场对电子运动的影响。5.1 Sommerfeld的自由电子论的自由电子论 电子在运动中存在一定的散射机制。电子在运动中存在一定的散射机制。一、自由电子模型一、自由电子模型 电子在一有限深度的方势阱中运电子在一有限深度的方势阱中运 动,电子间的相互作用忽略不计;动,电子间的相互作用忽略不计; 电子按能量的分布遵从电子按能量的分布遵从FermiDirac统计;统计; 电子的填充满足电子的填充满足Pauli不相容原理;不相容原理;边界或端点二、运动方程及其解二、运动方程及其解2202VEm V0:电子在势阱底部所具有的势能,取:电子在势阱底部所具有的势能,取V0 0。令令222mEk 有有220k1. 运动方程运动方程方程的解:方程的解: iAe k rkrA:归一化因子,由归一化条件确定:归一化因子,由归一化条件确定电子的能量:电子的能量: 222kEm k(V)1d *kkV: 金属的体积金属的体积1VA 1expVi krk r :电子波矢:电子波矢 k金属中原胞的总数:金属中原胞的总数: N N1 N2 N311expexpVVii Nk rkraexp1i kaN2. 周期性边界条件周期性边界条件h为整数为整数2 h kaN设设N 是金属沿基矢是金属沿基矢 ( 1,2,3)方向的原胞数,)方向的原胞数,a周期性边界条件:周期性边界条件: , 1, 2, 3 kkrraNk 空间中的状态分布 状态 =(kx, ky ,kz)令:令:123123 kbbb123123 kabbbaNN22 hN123123123hhh kbbbNNNh为整数,为整数, 1, 2, 3hN123123111bbbbNNNN 33V.88abvconst NNk在在k空间中,电子态的分布是均匀的,分布密度只与金属的体积有关空间中,电子态的分布是均匀的,分布密度只与金属的体积有关.38abv在在 空间中,波矢空间中,波矢 的分布密度为的分布密度为 k kk 空间中的状态分布 状态 1expV (,)xyzik kk kkrk rb2/N2相格 一个角点一个角点(kx,ky,kz)代表一个量子态。每个相代表一个量子态。每个相格有八个角点,每个角点都与其它七个相格共格有八个角点,每个角点都与其它七个相格共有。所以动量空间中的相格数就决定了量子态有。所以动量空间中的相格数就决定了量子态的数目。每一个量子态在的数目。每一个量子态在 空间中所占的体积空间中所占的体积为:为: k3. 能态密度能态密度 22222222xyzkEkkkmm k 343k k考虑电子自旋,如考虑电子自旋,如将每一个自旋态看作一个能态将每一个自旋态看作一个能态,在,在能量为能量为E的球体中,电子能态总数为的球体中,电子能态总数为 323233324V438322mZ EkE k在能量为在能量为E的球体中,波矢的球体中,波矢 的取值总数为的取值总数为 k 32322323VmZ EE定义:能态密度定义:能态密度 32122322VmdZN EEdE其中:其中:322322VmC 电子的能态密度并不是均匀分布的,电子能量越高,电子的能态密度并不是均匀分布的,电子能量越高,能态密度就越大。能态密度就越大。12CE能态密度:在能态密度:在EEdE之间单位能量间隔中的能态数之间单位能量间隔中的能态数三、三、FermiDirac统计统计(金属中自由电子的分布金属中自由电子的分布)1. 量子统计基础知识量子统计基础知识 经典的经典的Boltzmann统计:统计: expBEf Ek T 量子统计:量子统计: FermiDirac统计和统计和BoseEinstein统计统计玻色子:自旋为整数玻色子:自旋为整数n的粒子(如:光子、声子等),的粒子(如:光子、声子等), 玻色子遵从玻色子遵从BoseEinstein统计规律,统计规律, 玻色子不遵从玻色子不遵从Pauli原理。原理。费米子:自旋为半整数(费米子:自旋为半整数(n1/2) 的粒子(如:电子、质的粒子(如:电子、质 子、中子子、中子 等),费米子遵从等),费米子遵从FermiDirac统计规统计规 律,费米子的填充满足律,费米子的填充满足Pauli原理。原理。2. T0时电子的分布时电子的分布T0时,电子的分布函数为时,电子的分布函数为f(E) =1 E EF00 E EF0EEF001f(E)T0022FFmEk 费米半径费米半径FFFPkmV 费米动量费米动量2202FFkEm 费米能费米能FFkVm 费米速度费米速度系统的自由电子总数为系统的自由电子总数为 0Nf E N E dET0 00FEN E dE031220023FEFCE dEC E322322VmC在在EEdE中的电子数为:中的电子数为: dNf E N E dENnV 自由电子密度自由电子密度金属:金属:n:1022 1023 cm3323202323FVmNE2323220223322FNEnmVmEF0 几个几个eV系统的总能量:系统的总能量: 00UEf E N E dET0 00FEEN E dE定义定义 Fermi 温度:温度: 0FFBETk金属:金属:TF: 104 105 K物理意义:物理意义:设想将设想将EF0转换成热振动能,相当于多高温度转换成热振动能,相当于多高温度 下的振动能。下的振动能。元素元素EF0 (eV)TF (104K)元素元素EF0 (eV)TF (104K)Li4.725.48Mg7.138.27Na3.233.75Ca4.685.43K2.122.46Sr3.954.58Rb1.852.15Ba3.654.24Cs1.581.83Zn9.3910.90Cu7.008.12Cd7.468.66Ag5.486.36Al11.6313.49Au5.516.39Ga10.3512.01Be14.1416.41In8.609.98一些金属元素费米能与费米温度的计算值一些金属元素费米能与费米温度的计算值3. T 0时的分布时的分布能量在能量在EEdE之间的电子数为:之间的电子数为: dNf E N E dE 1exp1Bf EEk T+ FermiDirac分布函数分布函数:电子的化学势:电子的化学势物理意义:在体积不变的情况下,系统增加一个电子所物理意义:在体积不变的情况下,系统增加一个电子所 需的自由能需的自由能当当E 时,时,f( )1/2 ,代表填充概率为,代表填充概率为1/2的能态的能态 expexpexpBBBEEf Ek Tk Tk TE, f(E)迅速趋于零迅速趋于零 当当E 几个几个kBT时,时,exp(E )/ kBT 1 ,FermiDirac分布过渡到经典的分布过渡到经典的Boltzmann分布分布E 几个几个kBT的能态基本上是没有电子占据的空态的能态基本上是没有电子占据的空态 对金属,对金属,T几个几个kBT时,时, exp(E )/ kBT 几个几个kBT的能态基本上是满态。的能态基本上是满态。在强简并情况下,在强简并情况下, EF( EF是是T 0时的费米能)时的费米能)量子力学中能量的简并性:能量简并性;量子力学中能量的简并性:能量简并性;金属自由电子气的简并性:统计的简并性,即指金属金属自由电子气的简并性:统计的简并性,即指金属自由电子气与理想气体遵从的统计规律的差异性。自由电子气与理想气体遵从的统计规律的差异性。 对于半导体,对于半导体,n 1017 cm-3,其,其TF 102 K,当当T TF时,其分布已经很接近于经典分布了。时,其分布已经很接近于经典分布了。T0K时费密分布函数T = 300K, kBT = 0.025eV, EF 5eV,带入由F-D分布函数可知,只有E在EF附近kT范围内的电子吸收能量才能从EF以下能级跳到EF以上能级。成功解释了金属电子热容C远小于德鲁特理论值的实验事实。T越高,简并性越差。状态不变,无现象。 对于金属而言,对于金属而言,T 0时,只有在费米面附近几个时,只有在费米面附近几个kBT的电子受热激发,对电子热容量的贡献主要来自的电子受热激发,对电子热容量的贡献主要来自费米面附近厚度费米面附近厚度kBT的一层电子。的一层电子。FFNf EN EE 在在 EEF kBT中的电子数为中的电子数为00122FBFBN Ek TN Ek T032BFNNk TE而每个电子热运动的平均能量:而每个电子热运动的平均能量:32Bk T由于热激发,系统所获得的能量为由于热激发,系统所获得的能量为2203294BBFk TUNk TNE03223FNC E0012FFN EC E0032FFNN EE09922BeBBFFdUk TTCNkNkdTET电子热容量为:电子热容量为: 对于一摩尔金属,对于一摩尔金属,NZN0,Z:每个金属原子:每个金属原子所贡献的自由电子数。所贡献的自由电子数。92eFTCZRT 常温下,常温下,CL 3R,由于,由于TTF,所以,所以Ce CL ,即即常温下可以不必考虑电子热容量的贡献。常温下可以不必考虑电子热容量的贡献。0FBFEk T

    注意事项

    本文(高二物理竞赛金属自由电子论课件.pptx)为本站会员(ge****by)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开