欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    耦合电感的去耦等效方法.doc

    • 资源ID:12996110       资源大小:309KB        全文页数:8页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    耦合电感的去耦等效方法.doc

    . .耦合电感的去耦等效方法的讨论王胤旭5090309291陈琦然5090309306杨衎 5090309摘要:本文主要讨论有公共连接点的两个耦合电感的简单去耦等效方法以及由此衍生的两个特例-耦合电感的串联和并联。并讨论多重耦合电感的去耦相对独立性以及某些含有复杂耦合电感电路的快速去耦等效方法。1. 有公共连接点的耦合电感的去耦等效图示电路中, 耦合电感L1和L2 有一公共连接点N, 根据耦合电感的性质, 可得如下方程:对于节点N有KCL方程:上面两式整理得:故可得其等效去耦电路如图2所示。 图1 耦合电感图2 等效去耦后的电感上述去耦过程可以用文字表述如下:1设互感为M 的两耦合电感具有公共的连接点假设其同名端相连且连接点处仅含有三条支路, 那么其去耦规那么为: 含有耦合电感的两条支路各增加一个电感量为- M 的附加电感; 不含耦合电感的另一条支路增加一个电感量为- M 的附加电感。假设为非同名端连接,只需将上述电感量M改变符号即可。2假设连接处含有多条支路, 那么可以通过节点分裂, 化成一个在形式上仅含三条支路的节点。2. 两个特例-耦合电感的串联和并联2. 1 两耦合电感串联1假设同名端连接于同一节点即电流从异名端流入, 那么构成反接串联,计算公式:;2假设非同名端连接于同一节点(即电流从同名端流入), 那么构成顺接串联,计算公式:;2. 2 两耦合电感的并联1)假设同名端连接于同一节点, 那么构成同侧并联,计算公式:;2)假设非同名端连接于同一节点, 那么构成异侧并联,计算公式:;3. 多重耦合电感的去耦相对独立性独立性:在电路中, 假设含有多个电感的多重耦合, 可以只对其中某一个或某几个互感进展去耦变换, 保存其它耦合不变, 那么变换后的电路与原电路等效。亦即, 多重耦合电感在去耦变换时具有相对的独立性。证明:设电路中含有三个电感元件, 且两两耦合, 如( 图4) 所示, 那么根据耦合电感的性质, 可以用图5 所示受控源电路等效。 图3 三重耦合电感 图4 三重耦合电感等效去耦4. 几种典型双重耦合电路的简单去耦变换 4.1 链形连接 图5 链型连接的快速去耦4.2 星形连接可见每次去耦的过程仅仅是对互感量M 进展加减运算, 因此在熟悉上述去耦规那么后,我们便可以一步完成去耦过程: 图6 星型连接的快速去偶4.3三角形连接 图7 三角形连接快速去偶5. 耦合电感连接于一广义节点 图1描述的是两个耦合电感连接于一个单节点的情形。假设它们连接于一个广义节点, 如图8所示,那么只要对封闭面C 应用广义KCL 即可得: , 因此上述讨论的全部结果对于连接于广义节点的情形完全适用。实际上在4. 1 的最后一步处理M13 时已经用到了这一点。这里再举一例:图示电路中, L1 为单耦合, L2, L3 为双重耦合,L4 为三重耦合。L2, L3, L4 连接于一子网络N, 那么其去耦等效电路如图9 所示: 图8 广义节点 图9 广义节点去耦 以上讨论虽然是在正弦稳态下所进展的, 但是根据傅立叶级数和傅立叶积分, 对任意的线性非时变集中参数电路, 无论信号波形如何, 上述去藕等效变换均有效。6. 其他讨论方式 除上述利用相量法讨论去耦方式,我们还可以用微分方程或者在复频域下讨论等效去耦方式,但是这并不是该文重点,故不在此展开论述。7. 耦合电感较难处理的问题上述讨论仅限于:( 1) 耦合电感有一个公共的连接点( 或广义节点) ;( 2) 连接点处不多于三条支路。假设耦合电感没有公共的连接点, 或连接点处有假设干个相互耦合的电感( 如图10 所示)时, 如何进展快速去耦变换, 尚需进一步研究。 图10 较难处理问题8. 题图举例例1电路中R1 = 50, L 1 = 70mH, L 2= 25mH, M = 25mH, C = 1F , 正弦电源的电压U = 500 0°V ,= 104rad/ s ,求各支路电流。分析本例中含有耦合电感,因此,在列出KV L , KCL 方程时不应忘了互感电压。解设I , I1 , I 2 方向如图5 所示, 由于I是从L 1 的同名端流出,而ÛI 1 是从L 2 的同名端流入,所以互感电压取“- 号。 例1图KV L 、KCL 方程分别为:I(R1 +jL1)-jMI1+jL2I1- jMI=U,jL2I1-jMI- I2/(jC)=0,I2=I- I1代入给定的数值同时消去I2,得:I1=I=500/(50+j450) =1.104-83.66°AI2=0此题须注意:(1) 列写向量形式的KVL方程时不能忘了互感电压。(2) 互感电压的正负号确实定是问题的关键所在。例2 在下列图中i(t)=2sin(3t+30°)A,试求uac(t), uab(t), ubc(t)。例2图分析 本例中输入的是正弦信号,用向量法求解,在解的过程中须特别注意互感电压的方向。解 用向量表示输入信号,I=230°因为a、c间只有自感电压,无互感电压a、b间屋电流输入,所以:Uac= jL1I=j3×4230°=16.9120°,Uac(t)= 2×16.9sin(3t+120°) =24sin(3t+120°)又因为ab间只有互感电压无自感电压,所以Uab=jMI =j3×2230° =j6×230°所以Uab=6×2×2 sin(3t+120°) =12 sin(3t+120°)Ubc=-Uab+Uac=-62120°+122120° =62120°Ubc=12 sin(3t+120°)9. 参考文献?电路根底? XX交通大学?含有耦合电感电路的计算? 王成艳?电路理论含有耦合电感电路的计算? 李绍铭. .word.

    注意事项

    本文(耦合电感的去耦等效方法.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开