初、高中数学公式大全.doc
. .初中数学公式大全1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离一样的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等等角对等边 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形 48定理 四边形的内角和等于360° 49四边形的外角和等于360° 50多边形内角和定理 n边形的内角的和等于n-2×180° 51推论 任意多边的外角和等于360° 52平行四边形性质定理1 平行四边形的对角相等 53平行四边形性质定理2 平行四边形的对边相等 54推论 夹在两条平行线间的平行线段相等 55平行四边形性质定理3 平行四边形的对角线互相平分 56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 58平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60矩形性质定理1 矩形的四个角都是直角 61矩形性质定理2 矩形的对角线相等 62矩形判定定理1 有三个角是直角的四边形是矩形 63矩形判定定理2 对角线相等的平行四边形是矩形 64菱形性质定理1 菱形的四条边都相等 65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=a×b÷2 67菱形判定定理1 四边都相等的四边形是菱形 68菱形判定定理2 对角线互相垂直的平行四边形是菱形 69正方形性质定理1 正方形的四个角都是直角,四条边都相等 70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71定理1 关于中心对称的两个图形是全等的 72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 点平分,那么这两个图形关于这一点对称 74等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75等腰梯形的两条对角线相等 76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形 78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等 79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边 81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半 82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=a+b÷2 S=L×h 83 (1)比例的根本性质 如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d 84 (2)合比性质 如果ab=cd,那么(a±b)b=(c±d)d 85 (3)等比性质 如果ab=cd=mn(b+d+n0),那么 (a+c+m)(b+d+n)=ab 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例 87 推论 平行于三角形一边的直线截其他两边或两边的延长线,所得的对应线段成比例 88 定理 如果一条直线截三角形的两边或两边的延长线所得的对应线段成比例,那么这条直线平行于三角形的第三边 89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 90 定理 平行于三角形一边的直线和其他两边或两边的延长线相交,所构成的三角形与原三角形相似 91 相似三角形判定定理1 两角对应相等,两三角形相似ASA 92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93 判定定理2 两边对应成比例且夹角相等,两三角形相似SAS 94 判定定理3 三边对应成比例,两三角形相似SSS 95 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 分线的比都等于相似比 97 性质定理2 相似三角形周长的比等于相似比 98 性质定理3 相似三角形面积的比等于相似比的平方 99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 于它的余角的正弦值 100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 于它的余角的正切值 SABC=1/2absinCSABC=1/2bcsinASABC=1/2acsinB101圆是定点的距离等于定长的点的集合 102圆的内部可以看作是圆心的距离小于半径的点的集合 103圆的外部可以看作是圆心的距离大于半径的点的集合 104同圆或等圆的半径相等 105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 径的圆 106和线段两个端点的距离相等的点的轨迹,是着条线段的垂直 平分线 107到角的两边距离相等的点的轨迹,是这个角的平分线 108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 离相等的一条直线 109定理 不在同一直线上的三点确定一个圆。 110垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111推论1 平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 112推论2 圆的两条平行弦所夹的弧相等 113圆是以圆心为对称中心的中心对称图形 114定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等 115推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 116定理 一条弧所对的圆周角等于它所对的圆心角的一半 117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118推论2 半圆或直径所对的圆周角是直角;90°的圆周角所 对的弦是直径 119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角 121直线L和O相交 dr 直线L和O相切 d=r 直线L和O相离 dr 122切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理 圆的切线垂直于经过切点的半径 124推论1 经过圆心且垂直于切线的直线必经过切点 125推论2 经过切点且垂直于切线的直线必经过圆心 126切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角 127圆的外切四边形的两组对边的和相等 128弦切角定理 弦切角等于它所夹的弧对的圆周角 129推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 相等 131推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 两条线段的比例中项 132切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 线与圆交点的两条线段长的比例中项 133推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 134如果两个圆相切,那么切点一定在连心线上 135两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(Rr) 两圆内切 d=R-r(Rr) 两圆内含dR-r(Rr) 136定理 相交两圆的连心线垂直平分两圆的公共弦 137定理 把圆分成n(n3): 依次连结各分点所得的多边形是这个圆的内接正n边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 138定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 139正n边形的每个内角都等于n-2×180°n 140定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn2 p表示正n边形的周长 142正三角形面积3a4 a表示边长 143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°n=360°化为n-2(k-2)=4 144弧长计算公式:L=n兀R180 145扇形面积公式:S扇形=n兀R2360=LR2 146内公切线长= d-(R-r) 外公切线长= d-(R+r) 147完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2148平方差公式:(a+b)(a-b)=a2-b2还有一些,大家帮补充吧 实用工具:常用数学公式 公式分类 公式表达式 乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式 |a+b|a|+|b| |a-b|a|+|b| |a|b<=>-bab |a-b|a|-|b| -|a|a|a| 一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=(1-cosA)/2) sin(A/2)=-(1-cosA)/2) cos(A/2)=(1+cosA)/2) cos(A/2)=-(1+cosA)/2) tan(A/2)=(1-cosA)/(1+cosA) tan(A/2)=-(1-cosA)/(1+cosA) ctg(A/2)=(1+cosA)/(1-cosA) ctg(A/2)=-(1+cosA)/(1-cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin(A+B)/2)cos(A-B)/2 cosA+cosB=2cos(A+B)/2)sin(A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB 某些数列前n项和 1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径 余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角 圆的标准方程 (x-a)2+(y-b)2=r2 注:a,b是圆心坐标 圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0 抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h 正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h' 圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的外表积 S=4pi*r2 圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l 弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h 斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式 V=s*h 圆柱体 V=pi*r2h 高中数学常用公式及常用结论1. 元素与集合的关系,.2.德摩根公式 .3.包含关系4.容斥原理. 5集合的子集个数共有 个;真子集有1个;非空子集有1个;非空的真子集有2个.6.二次函数的解析式的三种形式(1)一般式;(2)顶点式;(3)零点式.7.解连不等式常有以下转化形式.8.方程在上有且只有一个实根,与不等价,前者是后者的一个必要而不是充分条件.特别地, 方程有且只有一个实根在,等价于,或且,或且.9.闭区间上的二次函数的最值 二次函数在闭区间上的最值只能在处及区间的两端点处取得,具体如下:(1)当a>0时,假设,那么;,.(2)当a<0时,假设,那么,假设,那么,.10.一元二次方程的实根分布依据:假设,那么方程在区间内至少有一个实根 . 设,那么1方程在区间内有根的充要条件为或;2方程在区间内有根的充要条件为或或或;3方程在区间内有根的充要条件为或 .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间的子区间形如,不同上含参数的二次不等式(为参数)恒成立的充要条件是.(2)在给定区间的子区间上含参数的二次不等式(为参数)恒成立的充要条件是.(3)恒成立的充要条件是或.12.真值表 非或且真真假真真真假假真假假真真真假假假真假假 13.常见结论的否认形式原结论反设词原结论反设词是不是至少有一个一个也没有都是不都是至多有一个至少有两个大于不大于至少有个至多有个小于不小于至多有个至少有个对所有,成立存在某,不成立或且对任何,不成立存在某,成立且或14.四种命题的相互关系原命题互逆逆命题假设那么假设那么互互互为为互否否逆逆否否否命题逆否命题假设非那么非互逆假设非那么非15.充要条件1充分条件:假设,那么是充分条件.2必要条件:假设,那么是必要条件.3充要条件:假设,且,那么是充要条件.注:如果甲是乙的充分条件,那么乙是甲的必要条件;反之亦然.16.函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数.17.如果函数和都是减函数,那么在公共定义域内,和函数也是减函数; 如果函数和在其对应的定义域上都是减函数,那么复合函数是增函数.18奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y轴对称,那么这个函数是偶函数19.假设函数是偶函数,那么;假设函数是偶函数,那么.20.对于函数(),恒成立,那么函数的对称轴是函数;两个函数与 的图象关于直线对称.21.假设,那么函数的图象关于点对称; 假设,那么函数为周期为的周期函数.22多项式函数的奇偶性多项式函数是奇函数的偶次项(即奇数项)的系数全为零.多项式函数是偶函数的奇次项(即偶数项)的系数全为零.23.函数的图象的对称性(1)函数的图象关于直线对称.(2)函数的图象关于直线对称.24.两个函数图象的对称性(1)函数与函数的图象关于直线(即轴)对称.(2)函数与函数的图象关于直线对称.(3)函数和的图象关于直线y=x对称.25.假设将函数的图象右移、上移个单位,得到函数的图象;假设将曲线的图象右移、上移个单位,得到曲线的图象.26互为反函数的两个函数的关系.27.假设函数存在反函数,那么其反函数为,并不是,而函数是的反函数.28.几个常见的函数方程(1)正比例函数,.(2)指数函数,.(3)对数函数,.(4)幂函数,.(5)余弦函数,正弦函数,. 29.几个函数方程的周期(约定a>0)1,那么的周期T=a;2,或,或,或,那么的周期T=2a;(3),那么的周期T=3a;(4)且,那么的周期T=4a;(5),那么的周期T=5a;(6),那么的周期T=6a.30.分数指数幂(1),且.(2),且.31根式的性质1.2当为奇数时,;当为偶数时,.32有理指数幂的运算性质(1).(2).(3).注: 假设a0,p是一个无理数,那么ap表示一个确定的实数上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式.34.对数的换底公式 (,且,且,).推论 (,且,且,).35对数的四那么运算法那么假设a0,a1,M0,N0,那么(1);(2) ;(3).36.设函数,记.假设的定义域为,那么,且;假设的值域为,那么,且.对于的情形,需要单独检验.37.对数换底不等式及其推广假设,那么函数 (1)当时,在和上为增函数.,(2)当时,在和上为减函数.推论:设,且,那么1.2.38.平均增长率的问题如果原来产值的根底数为N,平均增长率为,那么对于时间的总产值,有.39.数列的同项公式与前n项的和的关系( 数列的前n项的和为).40.等差数列的通项公式;其前n项和公式为.41.等比数列的通项公式;其前n项的和公式为或.42.等比差数列:的通项公式为;其前n项和公式为.43.分期付款(按揭贷款) 每次还款元(贷款元,次还清,每期利率为).44常见三角不等式1假设,那么.(2) 假设,那么.(3) .45.同角三角函数的根本关系式 ,=,.46.正弦、余弦的诱导公式(n为偶数)(n为奇数)(n为偶数)(n为奇数)47.和角与差角公式;.(平方正弦公式);.=(辅助角所在象限由点的象限决定, ).48.二倍角公式 .49. 三倍角公式 .50.三角函数的周期公式 函数,xR及函数,xR(A,为常数,且A0,0)的周期;函数,(A,为常数,且A0,0)的周期.51.正弦定理 .52.余弦定理;.53.面积定理1分别表示a、b、c边上的高.2.(3).54.三角形内角和定理在ABC中,有.55.简单的三角方程的通解.特别地,有.56.最简单的三角不等式及其解集.57.实数与向量的积的运算律设、为实数,那么(1) 结合律:(a)=()a;(2)第一分配律:(+)a=a+a;(3)第二分配律:(a+b)=a+b.58.向量的数量积的运算律:(1) a·b= b·a交换律;(2)a·b= a·b=a·b= a·b;(3)a+b·c= a·c +b·c.59.平面向量根本定理 如果e1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1、2,使得a=1e1+2e2不共线的向量e1、e2叫做表示这一平面内所有向量的一组基底60向量平行的坐标表示 设a=,b=,且b0,那么ab(b0).53. a与b的数量积(或内积)a·b=|a|b|cos61. a·b的几何意义数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cos的乘积62.平面向量的坐标运算(1)设a=,b=,那么a+b=.(2)设a=,b=,那么a-b=.(3)设A,B,那么.(4)设a=,那么a=.(5)设a=,b=,那么a·b=.63.两向量的夹角公式(a=,b=).64.平面两点间的距离公式=(A,B).65.向量的平行与垂直 设a=,b=,且b0,那么A|bb=a.ab(a0)a·b=0.66.线段的定比分公式 设,是线段的分点,是实数,且,那么.67.三角形的重心坐标公式 ABC三个顶点的坐标分别为、,那么ABC的重心的坐标是.68.点的平移公式.注:图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为.69.“按向量平移的几个结论1点按向量a=平移后得到点.(2) 函数的图象按向量a=平移后得到图象,那么的函数解析式为.(3) 图象按向量a=平移后得到图象,假设的解析式,那么的函数解析式为.(4)曲线:按向量a=平移后得到图象,那么的方程为.(5) 向量m=按向量a=平移后得到的向量仍然为m=.70.三角形五“心向量形式的充要条件设为所在平面上一点,角所对边长分别为,那么1为的外心.2为的重心.3为的垂心.4为的内心.5为的的旁心.71.常用不等式:1(当且仅当ab时取“=号)2(当且仅当ab时取“=号)34柯西不等式5.72.极值定理都是正数,那么有1假设积是定值,那么当时和有最小值;2假设和是定值,那么当时积有最大值.推广 ,那么有1假设积是定值,那么当最大时,最大;当最小时,最小.2假设和是定值,那么当最大时,最小;当最小时,最大.73.一元二次不等式,如果与同号,那么其解集在两根之外;如果与异号,那么其解集在两根之间.简言之:同号两根之外,异号两根之间.;.74.含有绝对值的不等式 当a> 0时,有.或.75.无理不等式1.2.3.76.指数不等式与对数不等式(1)当时,;.(2)当时,;77.斜率公式、.78.直线的五种方程 1点斜式 (直线过点,且斜率为)2斜截式(b为直线在y轴上的截距).3两点式()(、 ().(4)截距式(分别为直线的横、纵截距,)5一般式(其中A、B不同时为0).79.两条直线的平行和垂直 (1)假设,;.(2)假设,且A1、A2、B1、B2都不为零,;80.夹角公式 (1).(,,)(2).(,).直线时,直线l1与l2的夹角是.81.到的角公式 (1).(,,)(2).(,).直线时,直线l1到l2的角是.82四种常用直线系方程(1)定点直线系方程:经过定点的直线系方程为(除直线),其中是待定的系数; 经过定点的直线系方程为,其中是待定的系数(2)共点直线系方程:经过两直线,的交点的直线系方程为(除),其中是待定的系数(3)平行直线系方程:直线中当斜率k一定而b变动时,表示平行直线系方程与直线平行的直线系方程是(),是参变量(4)垂直直线系方程:与直线 (A0,B0)垂直的直线系方程是,是参变量83.点到直线的距离 (点,直线:).84.或所表示的平面区域设直线,那么或所表示的平面区域是:假设,当与同号时,表示直线的上方的区域;当与异号时,表示直线的下方的区域.简言之,同号在上,异号在下.假设,当与同号时,表示直线的右方的区域;当与异号时,表示直线的左方的区域. 简言之,同号在右,异号在左.85.或所表示的平面区域设曲线,那么或所表示的平面区域是:所表示的平面区域上下两局部;所表示的平面区域上下两局部.86. 圆的四种方程1圆的标准方程.2圆的一般方程(0).3圆的参数方程 .4圆的直径式方程(圆的直径的端点是、).87. 圆系方程(1)过点,的圆系方程是,其中是直线的方程,是待定的系数(2)过直线:与圆:的交点的圆系方程是,是待定的系数(3) 过圆:与圆:的交点的圆系方程是,是待定的系数88.点与圆的位置关系点与圆的位置关系有三种假设,那么点在圆外;点在圆上;点在圆内.89.直线与圆的位置关系直线与圆的位置关系有三种:;.其中.90.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,;.91.圆的切线方程(1)圆假设切点在圆上,那么切线只有一条,其方程是.当圆外时,表示过两个切点的切点弦方程过圆外一点的切线方程可设为,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线斜率为k的切线方程可设为,再利用相切条件求b,必有两条切线(2)圆过圆上的点的切线方程为;斜率为的圆的切线方程为.92.椭圆的参数方程是.93.椭圆焦半径公式,.94椭圆的的内外部1点在椭圆的内部.2点在椭圆的外部.95. 椭圆的切线方程(1)椭圆上一点处的切线方程是. 2过椭圆外一点所引两条切线的切点弦方程是.3椭圆与直线相切的条件是.96.双曲线的焦半径公式,.97.双曲线的内外部(1)点在双曲线的内部.(2)点在双曲线的外部.98.双曲线的方程与渐近线方程的关系(1假设双曲线方程为渐近线方程:. (2)假设渐近线方程为双曲线可设为. (3)假设双曲线与有公共渐近线,可设为,焦点在x轴上,焦点在y轴上.99. 双曲线的切线方程 (1)双曲线上一点处的切线方程是. 2过双曲线外一点所引两条切线的切点弦方程是.3双曲线与直线相切的条件是.100. 抛物线的焦半径公式抛物线焦半径.过焦点弦长.101.抛物线上的动点可设为P或 P,其中 .102.二次函数的图象是抛物线:1顶点坐标为;2焦点的坐标为;3准线方程是.103.抛物线的内外部(1)点在抛物线的内部.点在抛物线的外部.(2)点在抛物线的内部.点在抛物线的外部.(3)点在抛物线的内部.点在抛物线的外部.(4) 点在抛物线的内部.点在抛物线的外部.104. 抛物线的切线方程(1)抛物线上一点处的切线方程是. 2过抛物线外一点所引两条切线的切点弦方程是.3抛物线与直线相切的条件是.105.两个常见的曲线系方程(1)过曲线,的交点的曲线系方程是(为参数).(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.106.直线与圆锥曲线相交的弦长公式 或弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率. 107.圆锥曲线的两类对称问题1曲线关于点成中心对称的曲线是.2曲线关于直线成轴对称的曲线是.108.“四线一方程对于一般的二次曲线,用代,用代,用代,用代,用代即得方程,曲线的切线,切点弦,中点弦,弦中点方程均是此方程得到.109证明直线与直线的平行的思考途径1转化为判定共面二直线无交点;2转化为二直线同与第三条直线平行;3转化为线面平行;4转化为线面垂直;5转化为面面平行.110证明直线与平面的平行的思考途径1转化为直线与平面无公共点;2转化为线线平行;3转化为面面平行.111证明平面与平面平行的思考途径1转化为判定二平面无公共点;2转化为线面平行;3转化为线面垂直.112证明直线与直线的垂直的思考途径1转化为相交垂直;2转化为线面垂直;3转化为线与另一线的射影垂直;4转化为线与形成射影的斜线垂直.113证明直线与平面垂直的思考途径1转化为该直线与平面内任一直线垂直;2转化为该直线与平面内相交二直线垂直;3转化为该直线与平面的一条垂线平行;4转化为该直线垂直于另一个平行平面;5转化为该直线与两个垂直平面的交线垂直.114证明平面与平面的垂直的思考途径1转化为判断二面角是直二面角;2转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律(1)加法交换律:ab=ba(2)加法结合律:(ab)c=a(bc)(3)数乘分配律:(ab)=ab116.平面