欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    立体几何证明方法总结教师.doc

    • 资源ID:13004141       资源大小:337KB        全文页数:18页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    立体几何证明方法总结教师.doc

    . .一、线线平行的证明方法:1、利用平行四边形。2、利用三角形或梯形的中位线。3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行的性质定理4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。面面平行的性质定理 5、如果两条直线垂直于同一个平面,那么这两条直线 平行。线面垂直的性质定理6、平行于同一条直线的两条直线平行。7、夹在两个平行平面之间的平行线段相等。 需证明二、线面平行的证明方法:1、定义法:直线与平面没有公共点。2、如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。线面平行的判定定理3、两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面。三、面面平行的证明方法:1、定义法:两平面没有公共点。2、如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。面面平行的判定定理3、平行于同一平面的两个平面平行。4、经过平面外一点,有且只有一个平面和平面平行。5、垂直于同一直线的两个平面平行。四、线线垂直的证明方法:1、勾股定理。2、等腰三角形。3、菱形对角线。4、圆所对的圆周角是直角。5、点在线上的射影。6、如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直。7、在平面内的一条直线,如果和这个平面一条斜线的射影垂直,那么它也和这条斜线垂直。三垂线定理,需证明8、在平面内的一条直线,如果和这个平面一条斜线垂直,那么它也和这条斜线的射影垂直。三垂线逆定理,需证明9、如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。五、线面垂直的证明方法:1、定义法:直线与平面内任意直线都垂直。2、点在面内的射影。3、如果一条直线和一个平面内的两条相交直线垂直,那么 这条直线垂直于这个平面。线面垂直的判定定理4、如果两个平面互相垂直,那么在一个平面内垂直于它们 交线的直线垂直于另一个平面。面面垂直的性质定理5、两条平行直线中的一条垂直于平面,那么另一条也垂直于这个平面。6、一条直线垂直于两平行平面中的一个平面,那么必垂直于另一个平面。7、两相交平面同时垂直于第三个平面,那么两平面交线垂直于第三个平面。8、过一点,有且只有一条直线与平面垂直。9、过一点,有且只有一个平面与直线垂直。六、面面垂直的证明方法:1、定义法:两个平面的二面角是直二面角。2、如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。面面垂直的判定定理3、如果一个平面与另一个平面的垂线平行,那么这两个平面互相垂直。4、如果一个平面与另一个平面的垂面平行,那么这两个平面互相垂直。一选择题共27小题12021设l,m是两条不同的直线,是一个平面,那么以下命题正确的选项是A假设lm,m,那么lB假设l,lm,那么mC假设l,m,那么lmD假设l,m,那么lm22006过平行六面体ABCDA1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有A4条B6条C8条D12条3“直线l与平面无公共点是“l的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4m,n表示两条直线,表示一个平面,给出以下四个命题:n;其中正确命题的序号是ABCD5正方体ABCDA1B1C1D1中,E,F,G分别是A1B1、CD、B1C1的中点,那么以下中与直线AE有关的正确命题是AAE丄CGBAE与CG是异面直线C四边形ABC1F是正方形DAE平面BC1F6直线与平面平行的充要条件是这条直线与平面内的A一条直线不相交B两条直线不相交C任意一条直线都不相交D无数条直线不相交7、表示平面,a、b表示直线,那么a的一个充分条件是A,且aB=b,且abCab,且bD,且a8两条直线a,b,两个平面,那么以下结论中正确的选项是A假设a,且,那么aB假设b,ab,那么aC假设a,那么aD假设b,ab,那么a9以下四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB平面MNP的图形的序号是A、B、C、D、10设、是三个不同的平面,a、b是两条不同的直线,给出以下4个命题:假设a,b,那么ab;假设a,b,ab,那么;假设a,b,ab,那么;假设a、b在平面内的射影互相垂直,那么ab其中正确命题是ABCD11两条直线a,b和平面,假设b,那么ab是a的A充分但不必要条件B必要但不充分条件C充要条件D既不充分又不必要条件12直线a和平面,那么a的一个充分条件是A存在一条直线b,ab,bB存在一条直线b,ab,bC存在一个平面,a,D存在一个平面,a,a13,表示平面,a,b表示直线,那么a的一个充分条件是Aa,Ba=b,abCab,bD,a14A,b,c为三条不重合的直线,为三个不重合平面,现给出六个命题ab ab a a其中正确的命题是ABCD15以下说法正确的选项是A垂直于同一平面的两平面也平行B与两条异面直线都相交的两条直线一定是异面直线C过一点有且只有一条直线与直线垂直D垂直于同一直线的两平面平行16两条直线m、n与两个平面、,以下命题正确的选项是A假设m,n,那么mnB假设m,m,那么C假设m,m,那么D假设mn,m,那么n17直线a,b,平面,那么a的一个充分条件是Aab,bBa,Cb,abDab,b,a18A是平面BCD外一点,E,F,G分别是BD,DC,CA的中点,设过这三点的平面为,那么在直线AB,AC,AD,BC,BD,DC中,与平面平行的直线有A0B1条C2条D3条192021在空间,以下命题正确的选项是A平行直线的平行投影重合B平行于同一直线的两个平面平行C垂直于同一平面的两个平面平行D垂直于同一平面的两条直线平行202021设有直线m、n和平面、,以下四个命题中,正确的选项是A假设m,n,那么mnB假设m,n,m,n,那么C假设,m,那么mD假设,m,m,那么m212021如图,在长方体ABCDA1B1C1D1中,AB=BC=2,AA1=1,那么AC1与平面A1B1C1D1所成角的正弦值为ABCD222021两条不同直线,是三个不同平面,以下命题中正确的选项是A假设m,n,那么mnB假设,那么C假设m,m,那么D假设m,n,那么mn232007假设m,n是两条不同的直线,是三个不同的平面,那么以下命题中为真命题的是A假设m,那么mB假设=m,=n,mn,那么C假设,那么D假设m,m,那么242007两条直线m,n,两个平面,给出下面四个命题:mn,mn,m,nmnmn,mn,mn,mn其中正确命题的序号是ABCD252002三条直线m、n、l,三个平面a、b、g,以下四个命题中,正确的选项是ABCD26直线m平面,直线n平面,“直线cm,直线cn是“直线c平面的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件27假设直线a直线b,且a平面,那么b与平面的位置关系是A一定平行B不平行C平行或相交D平行或在平面内二填空题共3小题28如图:点P在正方体ABCDA1B1C1D1的面对角线BC1上运动,那么以下四个命题:三棱锥AD1PC的体积不变;A1P面ACD1;DPBC1;面PDB1面ACD1其中正确的命题的序号是 _29考察以下三个命题,在“处都缺少同一个条件,补上这个条件使其构成真命题其中l,m为不同的直线,、为不重合的平面,那么此条件为_l,l,l30在正四面体PABC中,D,E,F分别是棱AB,BC,CA的中点给出下面四个结论:BC平面PDF;DF平面PAE;平面PDF平面ABC;平面PAE平面ABC,其中所有不正确的结论的序号是_1.分析:根据题意,依次分析选项:A,根据线面垂直的判定定理判断C:根据线面平行的判定定理判断D:由线线的位置关系判断B:由线面垂直的性质定理判断;综合可得答案解答:解:A,根据线面垂直的判定定理,要垂直平面内两条相交直线才行,不正确;C:l,m,那么lm或两线异面,故不正确D:平行于同一平面的两直线可能平行,异面,相交,不正确B:由线面垂直的性质可知:平行线中的一条垂直于这个平面那么另一条也垂直这个平面故正确应选B2.:解:如图,过平行六面体ABCDA1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有12条,应选D33解答:解:假设“直线l与平面无公共点成立,那么“l即“直线l与平面无公共点“l为真命题反之,当“l时,“直线l与平面无公共点即“l“直线l与平面无公共点也为真命题根据充要条件的定义可得:直线l与平面无公共点是“l的充要条件应选C4解答:4:mn,根据线面垂直的性质定理:垂直于同一平面的两直线平行,故正确n,由m,mn得n或n,故不正确mn,由m,n,那么m,n可能平行、可能相交、可能异面故不正确,那么m,n可能相交、可能异面,根据异面直线所成的角,可知mn故正确应选D分析:5根据正方体的几何特征,可以判断出AE与CG相交,但不垂直,由此可以判断出A,B的真假,分析四边形ABC1F中各边的长度,即可判断C的真假,由线面平行的判定定理,可以判断出D的真假,进而得到答案解答:解:由正方体的几何特征,可得AE丄C1G,但AE与平面BCB1C1不垂直,故AE丄CG不成立;由于EGAC,故A,E,B,C四点共线AE与CG是异面直线错误;四边形ABC1F中,ABBC1,故四边形ABC1F是正方形错误;而AEC1F,由线面平行的判定定理,可得AE平面BC1F应选D点评:6解答:解:直线与平面平行,由其性质可知:这条直线与平面内的任意一条直线都不相交,A一条直线不相交,说明有其它直线与其相交,故A错误;B、两条直线不相交,说明有其它直线与其相交,故B错误;D、无数条直线不相交,说明有其它直线与其相交,无数不是全部,故D错误;应选C点评:此题考察直线与平面平行的判断定理:公理二:如果两个平面有一个公共点那么它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面,这些知识要熟练掌握7解答:解:A、还可能有a,所以不正确B、因为a不一定在内,所以不正确C、还可能有a,所以不正确D、,且a由面面平行的性质定理可知是正确的应选D点评:此题主要考察线线,线面,面面的平行及垂直间的相互转化,一定要注意常见结论的严密性8解答:解:A、,又a,a故A正确;B、b,ab,假设a,那么a不可能与平行,故B错误;C、a,假设a,那么结论不成立,故C错误;D、b,ab,假设a,那么结论不成立,故D错误;故A正确;点评:此题考察直线与平面平行的判断定理:公理二:如果两个平面有一个公共点那么它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面,这些知识要熟练掌握9分析:对于,可以构造面面平行,考虑线面平行定义;对于,考虑线面平行的判定及定义;对于,可以用线面平的定义及判定定理判断;对于,用线面平行的判定定理即可解答:解:对图,构造AB所在的平面,即对角面,可以证明这个对角面与平面MNP,由线面平行的定义可得AB平面MNP对图,通过证明ABPN得到AB平面MNP;对于、无论用定义还是判定定理都无法证明线面平行;应选B点评:此题考察线面平行的判定,主要考虑定义、判定定理两种方法,同时运用面面平行的性质解决问题10解答:解:a与b可以相交,故错误;与可以垂直,故错误;a,b,ab,故正确;a、b在平面内的射影互相垂直,a与b不一定是垂直的,有可能斜交,故错误;应选A点评:此题考察直线与平面平行的判断定理:公理二:如果两个平面有一个公共点那么它们有一条公共直线且所有的公共点都在这条直线上公理三:三个不共线的点确定一个平面推论一:直线及直线外一点确定一个平面推论二:两相交直线确定一个平面,这些知识要熟练掌握11解答:解:当b是假设ab时,a与的关系可能是a,也可能是a,即a不一定成立,故aba为假命题;假设a时,a与b的关系可能是ab,也可能是a与b异面,即ab不一定成立,故aab也为假命题;故ab是a的既不充分又不必要条件应选D点评:此题考察的知识点是充要条件,直线与平面平行关系的判断,先判断aba与aab的真假,然后利用充要条件的定义得到结论是证明充要条件的常规方法,要求大家熟练掌握12解答:解:A、直线a在内时,不正确B、直线a在内时,不正确C、面面平行的性质定理知正确D、直线a在内时,不正确应选C点评:此题主要考察在应用定理或常见结论时一定要条件全面,提醒学生做题量考虑要具体全面13解答:解:选项A,a,a或a选项B,a=b,aba或a选项C,ab,ba或aA、B、C三个选项都不能排除a,选项D,根据线面平行的性质可知正确应选D14解答:解:根据平行公理可知正确;根据面面平行的判定定理可知正确;对于错在a、b可能相交或异面对于错在与可能相交,对于错在a可能在内应选:C点评:此题主要考察了直线与平面平行的判定,以及平面与平面平行的判定,同时考察了对定理、公理的理解,属于综合题15分析:垂直于同一个平面的两个平面的位置关系不能确定,与两条异面直线都相交的直线如果是交于不同的四个点,一定异面,假设交于三个点那么共面,过一点在空间中有无数条直线与直线垂直,得到结论解答:解:垂直于同一个平面的两个平面的位置关系不能确定,故A不正确,与两条异面直线都相交的直线如果是交于不同的四个点,一定异面,假设交于三个点那么共面,故B不正确,过一点在空间中有无数条直线与直线垂直,故C不正确,垂直于同一直线的两个平面平行,正确,应选D16解答:解:对于A,假设m,n,那么m,n可以平行、相交,也可以异面,故不正确;对于B,假设m,m,那么当m平行于,的交线时,也成立,故不正确;对于C,假设m,m,那么m为平面与的公垂线,那么,故正确;对于D,假设mn,m,那么n,n也可以在内应选C点评:此题考察空间中直线和平面的位置关系涉及到两直线共面和异面,线面平行等知识点,在证明线面平行时,其常用方法是在平面内找直线平行的直线当然也可以用面面平行来推导线面平行17解答:解:A:ab,b,那么a与平面平行或在平面内,不正确B:a,那么a与平面平行或在平面内,不正确C:b,ab,那么a与平面平行或在平面内,不正确D:由线面平行的判定理知,正确应选D点评:此题主要考察了立体几何中线面之间的位置关系及判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题18解答:解:取AB的中点H,连接HE、EF、FG、GH平面HEFG为平面其中AB、BD、CD、AC都与平面相交E、F是BD、CD的中点EFBC,而EF,BCBC平面同理可证AD平面应选C点评:此题主要考察了直线与平面平行的判定,同时考察了空间想象能力和推理论证的能力,属于根底题19解答:解:平行直线的平行投影重合,还可能平行,A错误平行于同一直线的两个平面平行,两个平面可能相交,B错误垂直于同一平面的两个平面平行,可能相交,C错误应选D20分析由面面平行的判定定理和线面平行的定理判断A、B、D;由面面垂直的性质定理判断C解答:解:A不对,由面面平行的判定定理知,m与n可能相交;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;应选D点评:此题考察了线面的位置关系,主要用了面面垂直和平行的定理进展验证,属于根底题21分:由题意连接A1C1,那么AC1A1为所求的角,在AC1A1计算解答:解:连接A1C1,在长方体ABCDA1B1C1D1中,A1A平面A1B1C1D1,那么AC1A1为AC1与平面A1B1C1D1所成角在AC1A1中,sinAC1A1=应选D22分析:此题考察的知识点是空间中直线与平面之间的位置关系,假设m,n,m,n可以相交也可以异面,故A不正确;假设,那么,那么、可以相交也可以平行,故B不正确;假设m,m,那么,那么、可以相交也可以平行,故C不正确;m,n那么同垂直于一个平面的两条直线平行;故D答案正确;分析即可得到结论解答:解:m,n均为直线,其中m,n平行,m,n可以相交也可以异面,故A不正确;假设,那么,那么、可以相交也可以平行,故B不正确;假设m,m,那么,那么、可以相交也可以平行,故C不正确;m,n那么同垂直于一个平面的两条直线平行;应选D23分析:对于选项A直线m可能与平面斜交,对于选项B可根据三棱柱进展判定,对于选项C列举反例,如正方体同一顶点的三个平面,对于D根据面面垂直的判定定理进展判定即可解答:解:对于选项D,假设m,那么过直线m的平面与平面相交得交线n,由线面平行的性质定理可得mn,又m,故n,且n,故由面面垂直的判定定理可得应选D点评:此题主要考察了空间中直线与平面之间的位置关系,以及面面垂直的判定定理,同时考察了推理能力,属于根底题24解答:解:用线面垂直和面面平行的定理可判断正确;中,由面面平行的定义,m,n可以平行或异面;中,用线面平行的判定定理知,n可以在内;应选C点评:此题考察了线面垂直和面面平行的定理,及线面、面面位置关系的定义,属于根底题25分析:利用墙角知A不对,线面平行和垂直的定理知B不对,由面面平行的判定定理和线面垂直的性质定理来判断出C和D解答:解:A、与可能相交,如墙角,故A错误;B、可能l,故B错误;C、由面面平行的判定定理知,m、n可能相交,故C错误;D、由线面垂直的性质定理知,故D正确应选D点评:此题考察了空间中线面位置关系,主要根据线面和面面平行及垂直的定理进展判断,考察了定理的运用能力和空间想象能力26:由线面垂直的定义,当直线c平面时,c与中的任意一条直线都垂直,即“直线c平面“直线cm,直线cn为真命题,但反之,当“直线cm,直线cn时,直线c平面不一定成立,根据充要条件的定义,易得答案解答:解:假设直线cm,直线cn成立那么当m,n相交时,直线c平面成立,当m,n平行时,直线c平面不一定成立故“直线cm,直线cn“直线c平面为假命题假设直线c平面成立那么C垂直平面的每一条直线故“直线c平面“直线cm,直线cn为“直线cm,直线cn真命题故“直线cm,直线cn是“直线c平面的必要而不充分条件应选B点评:判断充要条件的方法是:假设pq为真命题且qp为假命题,那么命题p是命题q的充分不必要条件;假设pq为假命题且qp为真命题,那么命题p是命题q的必要不充分条件;假设pq为真命题且qp为真命题,那么命题p是命题q的充要条件;假设pq为假命题且qp为假命题,那么命题p是命题q的即不充分也不必要条件判断命题p与命题q所表示的X围,再根据“谁大谁必要,谁小谁充分的原那么,判断命题p与命题q的关系27分由直线a直线b,且a平面,知直线b平面或直线b在平面内解答:解:直线a直线b,且a平面,直线b平面或直线b在平面内应选D点评:此题考察空间直线与平面之间的位置关系,是根底题解题时要认真审题,仔细解答,注意合理地进展等价转化28分析:如右图,对于,容易证明AD1BC1,从而BC1平面AD1C,以P为顶点,平面AD1C为底面,易得;对于,连接A1B,A1C1容易证明平面BA1C1面ACD1,从而由线面平行的定义可得;对于,由于DC平面BCB1C1,所以DCBC1平面,假设DPBC1,那么DC与DP重合,与条件矛盾;对于,容易证明PDB1面ACD1,从而可以证明面面垂直解答:解:对于,容易证明AD1BC1,从而BC1平面AD1C,故BC1上任意一点到平面AD1C的距离均相等,所以以P为顶点,平面AD1C为底面,那么三棱锥AD1PC的体积不变;正确;对于,连接A1B,A1C1容易证明A1C1AD1且相等,由于知:AD1BC1,所以BA1C1面ACD1,从而由线面平行的定义可得;正确;对于由于DC平面BCB1C1,所以DCBC1平面,假设DPBC1,那么DC与DP重合,与条件矛盾;错误;对于,连接DB1,容易证明DB1面ACD1,从而由面面垂直的判定知:正确故答案为:点评:此题考察三棱锥体积求法中的等体积法;线面平行、垂直的判定,要注意使用转化的思想29分析:根据线面平行的判定定理,我们知道要判断线面平行需要三个条件:面内一线,面外一线,线线平行,分析中的三个命题,即可得到答案解答:解:表达的是线面平行的判定定理,缺的条件是“l为平面外的直线,即“l它同样适合,故填l故答案为:l点评:此题考察的知识点是直线与平面平行的判定,熟练掌握直线与平面平行判断的方法及必要的条件是解答此题的关键30专题:综合题。分析:正四面体PABC即正三棱锥PABC,所以其四个面都是正三角形,应该联想到“三线合一平面条件为空间问题提供素材解答:解:由DFBC可得BC平面PDF,故正确BCPE,BCAEBC面PAE, DFBCDF平面PAE,正确根据正四面的定义P点在底面的射影是底面ABC的中心O,有平面几何知识,O点不在DF上,故错在的根底上,DF面ABC,由面面垂直的判定定理,正确故答案为:点评:本小题考察空间中的线面关系,用到了正三角形中“三线合一,中位线定理等根底知识,考察空间想象能力和思维能力,平面问题空间问题相互转化的能力. .word.

    注意事项

    本文(立体几何证明方法总结教师.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开