求二面角平面角的方法.doc
. .寻找二面角的平面角的方法二面角是高中立体几何中的一个重要内容,也是一个难点对于二面角方面的问题,学生往往无从下手,他们并不是不会构造三角形或解三角形,而是没有掌握寻找二面角的平面角的方法我们试将寻找二面角的平面角的方法归纳为以下六种类型1.1 二面角的相关概念OABOABl新教材在二面角中给出的定义如下:从一条直线出发的两个半平面所组成的图形叫做二面角.图1定义只给出二面角的定性描述,关于二面角的定量刻画还必须放到二面角的平面角中去研究.教材如下给出了二面角的平面角的概念:二面角的平面角是指在二面角的棱上任取一点O,分别在两个半平面内作射线,那么为二面角的平面角.2. 二面角的求解方法对二面角的求解通常是先定位二面角的平面角,从而将三维空间中的求角问题转化为二维空间并可以通过三角形的边角问题加以解决.定位出二面角为解题的关键环节,下面就二面角求解的步骤做初步介绍:一、“找:找出图形中二面角,假设不能直接找到可以通过作辅助线补全图形定位二面角的平面角二、“证:证明所找出的二面角就是该二面角的平面角三、“算:计算出该平面角由于定位二面角的难度较大,对于求解二面角还有一种思路就是绕开定位二面角这一环节,通过一些等价的结论或公式或用空间向量等方法来直接求出二面角的大小.本文将根据这两种解题思路对二面角的解题方法做一一介绍.2.1 定位二面角的平面角,求解二面角二面角常见题型中根据所求两面是否有公共棱可分为两类:有棱二面角、无棱二面角.对于前者的二面角的定位通常采用找点、连线或平移等手段来定位出二面角的平面角;而对于无棱二面角我们还必须通过构造图形如延展平面或找公垂面等方法使其有“无棱而“现棱再进一步定位二面角的平面角.一、根据平面角的定义找出二面角的平面角例1 在的二面角的两个面内,分别有和两点和到棱的距离分别为2和4,且线段,试求:1直线与棱所构成的角的正弦值;2直线与平面所构成的角的正弦值分析:求解这道题,首先得找出二面角的平面角,也就是找出角在哪儿如果解决了这个问题,这道题也就解决了一半根据题意,在平面内作;在平面内作,连结、可以证明,那么由二面角的平面角的定义,可知为二面角的平面角以下求解略例1 正方体ABCD-A1B1C1D1中,求二面角A-BD-C1的大小为.例2(2006年XX试题)如图2(1),在正三角形ABCMAFA1QPBCECBPEF图2(2)图2(1)Q中,E、F、P分别是AB、AC、BC上的点,满足AE: EB=CF:FA=CP:BP=1:2.如图2(2),将AEF折起到A1EF的位置,使二面角A1-EF-B成直二面角,连接A1B、A1P.()与()略;()求二面角B-A1P-F的余弦值tanCOC1=分析与略解:在例1中,图形的对称和谐状态对解题产生了很好的启迪作用,在这里更离不开图形的这种对称和谐性.假设取BP的中点Q,连接EQ,那么在正三角形ABC中,很容易证得BEQPEQPEFAEF,那么在图2(2)中,有A1Q=A1F.作FMA1P于M,连接QH、QF,那么易得A1QPA1FP,QMPFMP,所以PMQ=PMF=90o,QMF为二面角B-A1P-F的平面角,使题解取得了突破性的进展.设正三角形的边长为3,依次可求得A1P=,QM=FM=,在QMF中,由余弦定理得cosQMF=。PABCDFGPABCDFE2021XX高考理18.(本小题总分值13分) 如图5.在锥体P-ABCD中,ABCD是边长为1的菱形,且DAB=60,,PB=2, E,F分别是BC,PC的中点.(1) 证明:AD平面DEF; (2) 求二面角P-AD-B的余弦值.解:(2) 由1知为二面角的平面角,在中,;在中,;在中,.PBADC图3例2在如图3所示的三棱锥P-ABC中,AB=AC=PB=PC=2,BC=,PA=.求二面角P-BC-A的大小.解:作BC中点D,连接PD,AD.因PB=PC=AB=AC,知PDBC,ADBC,又有面PBC与面ABC共棱可得PDA为二面角.P-BC-A的平面角.而AB=2,BC=,易知AD=PD=,在RTPAD中, 所以二面角P-BC-A的大小为.A图3PBl二、根据三垂线定理找出二面角的平面角此法最根本的一个模型为:如图3,设锐二面角,过面内一点P作PA于A,作ABl于B,连接PB,由三垂线定理得PBl,那么PBA为二面角的平面角,故称此法为三垂线法.例2 如图,在平面内有一条直线与平面成,与棱成,求平面与平面的二面角的大小分析:找二面角的平面角,可过作;平面,连结由三垂线定理可证,那么为二面角的平面角总结:1如果两个平面相交,有过一个平面内的一点与另一个平面垂直的垂线,可过这一点向棱作垂线,连结两个垂足应用三垂线定理可证明两个垂足的连线与棱垂直,那么就可以找到二面角的平面角图4B1AA1BlEF2在应用三垂线定理寻找二面角的平面角时,注意“作、“连、“证,即“作、“连结、“证明例3(2006年XX试题)如图4,平面平面,=l,A,B,点A在直线l上的射影为A1,点B在l的射影为B1,AB=2,AA1=1,BB1=,求:()略;()二面角A1ABB1的大小.分析与略解:所求二面角的棱为AB,不像图3的那样一看就明白的状态,但本质却是一样的,对本质的观察能力反映的是思维的深刻性.作A1EAB1于AB1于E,那么可证A1E平面AB1B.过E作EFAB交AB于F,连接A1F,那么得A1FAB,A1FE就是所求二面角的平面角.依次可求得AB1=B1B=,A1B=,A1E=,A1F=,那么在RtA1EF中,sinA1FE=E A B C F E1 A1 B1 C1 D1 D 例2(2021XX卷理) 如图,在直四棱柱ABCD-ABCD中,底面ABCD为等腰梯形,AB/CD,AB=4, BC=CD=2, AA=2, E、E、F分别是棱AD、AA、AB的中点。(1) 证明:直线EE/平面FCC;(2) 求二面角B-FC-C的余弦值。证1略E A B C F E1 A1 B1 C1 D1 D F1 O P 解2因为AB=4, BC=CD=2, 、F是棱AB的中点,所以BF=BC=CF,BCF为正三角形,取CF的中点O,那么OBCF,又因为直四棱柱ABCD-ABCD中,CC1平面ABCD,所以CC1BO,所以OB平面CC1F,过O在平面CC1F内作OPC1F,垂足为P,连接BP,那么OPB为二面角B-FC-C的一个平面角, 在BCF为正三角形中,在RtCC1F中, OPFCC1F,在RtOPF中,所以二面角B-FC-C的余弦值为.练习22021XX如图,在四棱锥中,底面是矩形证明平面;求异面直线与所成的角的大小;求二面角的大小分析:此题是一道典型的利用三垂线定理求二面角问题,在证明AD平面PAB后,容易发现平面PAB平面ABCD,点P 就是二面角P-BD-A的半平面上的一个点,于是可过点P作棱BD的垂线,再作平面ABCD的垂线,于是可形成三垂线定理中的斜线与射影内容,从而可得本解法。答案:二面角的大小为例3 在正方体中,为面中心,求二面角的大小.解:在正方体中,且,ADCBM图5面,故,又面,可知过作于,连接那么由三垂线逆定理可知为二面角的平面角.不妨令,于是,有,,可得 所以二面角的大小为三、作二面角棱的垂面,垂面与二面角的两个面的两条交线所构成的角,即为二面角的平面角例3 如图1,为内的一点,于点,于点,如果,试求二面角的平面角分析:平面因此只要把平面与平面、的交线画出来即可证明为的平面角,如图2注意:这种类型的题,如果过作,垂足为,连结,我们还必须证明,及为平面图形,这样做起来比拟麻烦例4 斜三棱柱中,平面与平面构成的二面角的平面角为,平面与平面构成的二面角为试求平面与平面构成的二面角的大小分析:作三棱柱的直截面,可得,其三个内角分别为斜三棱柱的三个侧面两两构成的二面角的平面角总结:对棱柱而言,其直截面与各个侧棱的交点所形成的多边形的各个内角,分别为棱柱相邻侧面构成的二面角的平面角P图5lCBA例4空间的点P到二面角的面、及棱l的距离分别为4、3、,求二面角的大小.分析与略解:如图5,分别作PA于A,PB于B,那么易知l平面PAB,设l平面PAB=C,连接PC,那么lPC.分别在RtPAC、RtPBC中,PC=,PA=4,PB=3,那么AC=,BC=.因为P、A、C、B四点共圆,且PC为直径,设PC=2R,二面角的大小为.ACGEB图7分别在PAB、ABC中,由余弦定理得AB2=AC2+BC2-2·AC·BCcos=PA2+PB2-2·PA·PBcos(),那么可解得cos=,=120o,二面角的大小为120o.例5 如图7,在正三棱柱中,截面侧面,假设,求平面与平面所成二面角锐角的大小.解: 设. 因为面与面重合,由题意面面,而为面与面相交于棱上一点且,所以面为所求二面角的一垂面,为所求二面角的平面角.在正三棱柱中,可知 故所求二面角的大小为.四、平移平面法无棱的一种例5 如图,正方体中,为的中点,为上的点,且设正方体的棱长为,求平面与底面构成的锐角的正切分析:此题中,仅仅知道二面角棱上的一点,在这种情况下,寻找二面角的平面角较困难根据平面平移不改变它与另一个平面构成的角的大小的原理,如果能把二面角中的一个平面平移,找出辅助平面与另一个平面的交线,就可以作出二面角的平面角有了平面角之后,只需要进展常规构造三角形和解三角形的计算,就可以解决问题了如图,过点作与相交于点,过点作,与相交于点可证平面平面这样,求平面与平面的二面角的平面角就转化为求平面与平面的二面角的平面角显然为这两个平面的交线,过点作,为垂足,连结,可证那么为此题要寻找的二面角例6此题关键在利用平移棱AOCBFDE图8的垂线进展解题在正三棱柱中,是的中点,,求二面角的大小.解:作且交BD于F,那么AE平面,连接,,并记它们的交点为O连接OF,由,知.由知OF,OE,而,RTRT,因此故有可得 ADCBK图9EFO故二面角的大小为.例7 在棱长为1的正方体中,E是BC的中点,试求面与平面所成二面角的大小.解: 取中点F,连FD,FB;取AD中点K连接AK,BK,AB.显然,DEBF为平行四边形.因为AK/FD,KB/DE,知平面AKB/平面DEBF。取AB中点O,连接OK,OA,由AK=BK,AA=BA知,OKAB,OAAB故AOK为二面角的平面角.可得故平面与平面所成二面角的大小为.五、找垂面,作垂线例6 如图,正方体中,为棱的中点,求平面和平面所构成的锐二面角的正切分析:平面与二面角的一个面垂直,与另一个平面相交,过点作,垂足为,过作,交于点,连结,由三垂线定理可证,那么为二面角的平面角总结:当一个平面与二面角的一个平面垂直,与另一个平面相交时,往往过这个面上的一点作这两个垂直平面交线的垂线,再过垂足作二面角棱的垂线根据三垂线定理即可证明,并找出二面角的平面角再如图,要找所构成的二面角的平面角,可找平面,且,过上任何一点作,垂足为,过作,垂足为,连结,可证为的平面角六、根据特殊图形的性质找二面角的平面角1三线合一例7 如图,空间四边形中,试求二面角的余弦值分析:如图1,那么和为等腰三角形过作,垂足为,连结根据三线合一,且为中点,可证,那么为二面角的平面角2全等三角形例8 如图,空间四边形,试求的余弦值分析:过作,垂足为,连结根据条件,和全等,可证,那么为二面角的平面角3二面角的棱蜕化成一点例9 如图,四棱锥中,和与面垂直,为正三角形1假设时,求面与面的夹角;2假设时,求面与面的夹角分析:如图,面与面的交线蜕化成一点,但面与面与面相交如果三个平面两两相交,它们可能有三种情况:1交线为一点;2一条交线;3三条交线互相平行在图1中,两条交线与互相平行,所以肯定有过且平行于的一条交线可过作,平面与平面的交线即为过作于,过作于可证,那么为面与面的夹角如图,与不平行且相交根据三个平面两两相交可能出现的三种情况,这三个面的交线为一点延长、相交于点,连结即为平面与平面的交线,通过一些关系可证为平面与平面的夹角通过以上分析和举例说明,寻找二面角的平面角的方法就比拟容易了只要我们勤动脑,善观察,多总结,抓住问题的特征,找出适当的方法,关于二面角的平面角的问题就会迎刃而解七、 面积法不作二面角求法DAM图6ECBC1A1B1HG如图1,设二面角C-BD-C1的大小为,那么在RtCOC1中,cos,在某些情况下用此法特别方便.例5 如图6,平面外的A1B1C1在内的射影是边长为1的正三角形ABC,且AA1=2,BB1=3,CC1=4,求A1B1C1所在的平面与平面所成锐二面角的大小.分析与略解:问题的情境很容易使人想到用面积法,分别在BB1、CC1取BD=CE=AA1,那么A1B1C1A1DE,可求得A1B=,A1C1=,B1C1=,所以等腰A1B1C1的面积为,又正ABC的面积为.设所求二面角的大小为,那么cos=例42021理如图,在三棱锥中,求证:;求二面角的大小;ACBEP分析:此题要求二面角BAPC的大小,如果利用射影面积法解题,不难想到在平面ABP与平面ACP中建立一对原图形与射影图形并分别求出S原与S射于是得到下面解法。解:证略,又,又,即,且,平面取中点连结,是在平面内的射影,ACE是ABE在平面ACP内的射影,A1D1B1C1EDBCA图5于是可求得:,那么,设二面角的大小为,那么二面角的大小为练习4:如图5,E为正方体ABCDA1B1C1D1的棱CC1的中点,求平面AB1E和底面A1B1C1D1所成锐角的余弦值.图13CBAOS分析 平面AB1E与底面A1B1C1D1交线即二面角的棱没有给出,要找到二面角的平面角,那么必须先作两个平面的交线,这给解题带来一定的难度。考虑到三角形AB1E在平面A1B1C1D1上的射影是三角形A1B1C1,从而求得两个三角形的面积即可求得二面角的大小。答案:所求二面角的余弦值为cos=.例10 求正四面体任意两个面所成二面角的大小.解: 如图13,正四面体S-ABC,由正四面体的对称性,不妨求侧面与底面所成二面角的大小.易知而S的射影为的中心,所以ADCBE图14F于是有故正四面体任意两面所成二面角的大小为.例11 如图14,在正方体中,E为CC中点,F在BB上,且BF=BB,求平面AEF在底面ABCD所成二面角的余弦值.解:如图14所示,在正方体中,.由射影面积公式知故所求二面角的余弦值为.八、将无棱二面角转化为有棱二面角直接作出无棱二面角的棱,将无棱二面角转化为有棱二面角,按有棱二面角来处理,作棱有两种常用的方法:作交线,由交点得棱; 作平行线,即为棱.例32021XX如下图,四棱锥P-ABCD的底面ABCD是边长为1的菱形,BCD60°,E是CD的中点,PA底面ABCD,PA2. 证明:平面PBE平面PAB;求平面PAD和平面PBE所成二面角锐角的大小.分析:此题的平面PAD和平面PBE没有明确的交线,依本法显然要补充完整延长AD、BE相交于点F,连结PF.再在完整图形中的PF.上找一个适合的点形成二面角的平面角解之。证略ABCEDPFGH解: 延长AD、BE相交于点F,连结PF.过点A作AHPB于H,由知平面PBE平面PAB,所以AH平面PBE.在RtABF中,因为BAF60°,所以,AF=2AB=2=AP.在等腰RtPAF中,取PF的中点G,连接AG.那么AGPF.连结HG,由三垂线定理的逆定理得,PFHG.所以AGH是平面PAD和平面PBE所成二面角的平面角锐角.在等腰RtPAF中,在RtPAB中,所以,在RtAHG中,ACBB1C1A1L故平面PAD和平面PBE所成二面角锐角的大小是练习3斜三棱柱ABCA1B1C1的棱长都是a,侧棱与底面成600的角,侧面BCC1B1底面ABC。1求证:AC1BC;2求平面AB1C1与平面 ABC所成的二面角锐角的大小。提示:此题需要补棱,可过A点作CB的平行线L答案:所成的二面角为45O如图11中只现出两个局部半平面的一个公共点P,图中没有给出二面角的棱.此时,假设在二面角的两个半平面内各存在一条直线且相互平行,那么过P分别作这两条直线的垂线PQ和PR,那么QPR就是二面角的平面角.例9如图12,P-ABCD为正四棱锥,边长为,求平面PAB与平面PCD所成二面角的余弦值.解: 如图,过P点作,那么.故在P-ABCD中有.FE图12DCAB所以,.作AB中点E,CD中点F.连接PE,PF.易知PEAB,PE,又PFCD,PF,可知EPF为所求二面角的平面角.由条件PE=PF=,得到故平面PAB与平面PCD所成二面角的余弦值为.九、向量法向量法解立体几何中是一种十分简捷的也是非常传统的解法,可以说所有的立体几何题都可以用向量法求解,用向量法解立体几何题时,通常要建立空间直角坐标系,写出各点的坐标,然后将几何图中的线段写成用坐标法表示的向量,进展向量计算解题。假设二面角两个半平面,的法向量分别为且知道二面角为锐角钝角,那么.定理1 设二面角为,那么,有ALMB图19EAF图18B文给出另一结论:定理 2 如图19,空间任一条直线L,A,B是直线L上的两个点,M是空间任一点,MNL于N,那么AMDCB图20EFN利用上述两结论我们可以利用空间坐标向量计算二面角,防止产生二面角的平面角与其法向量夹角的误判,同时又防止了对垂足M,N坐标的判断.例14如图20,正方形ABCD和矩形ACEF坐在平面相垂直,,M是线段EF中点,求二面角A-DF-B的大小.解: 如图建立空间直角坐标系,那么. 作AMDF于M,BNDF的延长线于N,那么所成的角的大小与二面角A-DF-B的大小相等.故二面角A-DF-B的大小为.例12如图15,在矩形ABCD外存在一点P,使PA面ABCD,PA=PB=1,BC=2.求二面角B-PC-D的大小.APDCB图15解:由题意建立如图空间直角坐标系,那么A(0,0,0) P(0,0,1) B(1,0,0) C(1,2,0) D(0,2,0),设面PAC的法向量为,面PCD的法向量那么有由 及 得注意到B-PC-D为钝角,故B-PC-D的大小为.例4:2021XX卷理如图,在五面体ABCDEF中,FA 平面ABCD, AD/BC/FE,ABAD,M为EC的中点,AF=AB=BC=FE=AD(I) 求异面直线BF与DE所成的角的大小;(II) 证明平面AMD平面CDE;求二面角A-CD-E的余弦值。现在我们用向量法解答:如下图,建立空间直角坐标系,以点为坐标原点。设依题意得I所以异面直线与所成的角的大小为.II证明:,III又由题设,平面的一个法向量为练习5、2021XX如图,在直三棱柱中,平面侧面.求证:;假设直线与平面所成的角为,二面角的大小为,试判断与的大小关系,并予以证明.分析:由条件可知:平面ABB1 A1平面BCC1 B1平面ABC于是很容易想到以B 点为空间坐标原点建立坐标系,并将相关线段写成用坐标表示的向量,先求出二面角的两个半平面的法向量,再利用两向量夹角公式求解。答案:,且总之,上述五种二面角求法中,前三种方法可以说是三种增添辅助线的一般规律,后两种是两种不同的解题技巧,考生可选择使用。十、其他有关二面角的最值问题等求最值是代数、三角、解几的“热点问题,殊不知立体几何中也有引人入胜的最值问题.图7EDCBAl例6 二面角-l-的大小是变量,点B、C在l上,A、D分别在面、,且ADBC,AD与面成角,假设ABC的面积为定值S,求BCD面积Q的最大值.分析与略解:如图9,作AEBC于E,连DE,那么由ADBC得BC平面ADE,那么DEBC,AED=,ADE=.在AED中,由正弦定理得,所以,那么当时,有Qmax=2S.BCD和ABC有公共的底边BC,那么它们的面积比等于对应高之比,这是简单的平几知识,但用在这里却发挥了以简驭繁的奇妙功能.三角函数与正弦定理给题目注入了新的活力. .word.