欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    [八年级下册数学教案勾股定理]初二下册数学勾股定理.docx

    • 资源ID:13012956       资源大小:24.38KB        全文页数:15页
    • 资源格式: DOCX        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    [八年级下册数学教案勾股定理]初二下册数学勾股定理.docx

    八年级下册数学教案勾股定理初二下册数学勾股定理 数学是研究数量、结构、变化、空间以及信息等概念的一门学科,八年级数学是中学的关键时期,下面小编为你整理了八年级下册数学教案全,希望对你有帮助。 初二下册数学教案勾股定理篇一 一、教学设计理念 随着社会的发展,新课程改革的不断深入,数学课已不仅是一些数学知识的学习,更重要的是体现知识的认知发展过程。教育的目的是培养具有独立思考能力、具有实践精神和创新能力的人。一堂好课应该是学生最大限度参与的课。数学课程标准中指出学生的数学学习应当是现实的、有意义的、富有挑战性的,内容要有利与学生主动进行观察、实验、猜想、验证、推理与交流。内容的呈现应采取不同的表达方式,以满足多样化的学习需求。数学活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。 二、教材、学情分析与处理 本节知识是在学生掌握了直角三角形的三个性质:直角三角形两锐角互余和30°所对的直角边等于斜边的一半以及在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°的基础上展开的。勾股定理是直角三角形的一个非常重要的性质,它揭示了一个直角三角形三边的数量关系,可解决直角三角形的许多有关的计算,是初三解直角三角形的主要依据之一,中考中的四边形和圆等综合题中也经常出现。贯穿了整个几何学习,更是数形结合的重要典范。更重要的是学生在探索定理的过程中,无论是课前准备和课上交流以及课下活动都让学生充分感受到学习、思考的重要性,与人合作的重要性以及数学在实际生活中的重要作用,是进行爱国教育的重要题材! 本节课的教育对象是初二下的学生,共性是思维活跃,参与意识较强。而且一般家庭都有电脑,对教师布置的网上作业也颇感兴趣,并能制作简单课件。形成了一定的数学学习习惯。 三、教学目标 (一)知识与技能目标: 1、掌握勾股定理及其证明 2、会利用勾股定理进行直角三角形的简单计算。 3、了解有关勾股定理的历史知识 (二)过程与方法目标 经历课前预习和课上观察、分析、归纳、猜想、验证并运用实践的过程,了解数学知识的生成与发展过程。通过了解勾股定理的几个著名证法(赵爽证法、欧几里得证法等),使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵。使学生自主学习能力和分析问题解决问题的能力得到提高。培养与人合作的意识。 (三)情感、态度和价值观 1、通过自主学习培养学生探究、发现问题的能力,体验获取数学知识的过程。 2、通过小组合作、探索培养学生的团队精神,以及不畏艰难,实事求是的学习态度和严谨的数学学习习惯。 3、通过了解有关勾股定理的中西历史知识,激发学生的爱国热情,培养学生的民族自豪感。 四、教学重点、难点 本节课在教材处理上,先让学生带着三个问题预习完成网上作业,自制4个两条直角边不等的全等的直角三角形,准备一张坐标纸。从而初步了解勾股定理的历史和内容以及证法,并制作成课件或打印资料,为课上活动做了充分的准备。为突破本课重、难点起到了至关重要的作用。勾股定理这部分内容共计两课时,本节课是第一课时。教学重点定位为勾股定理的探索过程及简单应用。教学难点是勾股定理的证明。把勾股定理的应用放在第二课时进行专题训练。 五、教法、学法及教学手段 自主探索、合作交流、引导点拨 六、教学流程 (一)创设情境,引入课题。(二)自主探索,获得定理(三)独立思考,应用定理(四)畅所欲言,归纳小结。 七、教学过程设计 初二下册数学教案勾股定理篇二 一、教学目标 1、让学生通过对的图形创造、观察、思考、猜想、验证等过程,体会勾股定理的产生过程。 2、通过介绍我国古代研究勾股定理的成就感培养民族自豪感,激发学生为祖国的复兴努力学习。 3、培养学生数学发现、数学分析和数学推理证明的能力。 二、教学重难点 利用拼图证明勾股定理 三、学具准备 四个全等的直角三角形、方格纸、固体胶 四、教学过程 (一)趣味涂鸦,引入情景 教师:很多同学都喜欢在纸上涂涂画画,今天想请大家帮老师完成一幅涂鸦,你能按要求完成吗? (1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形。 (2)再分别以这个三角形的三边向三角形外作3个正方形。 学生活动:先独立完成,再在小组内互相交流画法,最后班级展示。 (二)小组探究,大胆猜想 教师:观察自己所涂鸦的图形,回答下列问题: 1、请求出三个正方形的面积,再说说这些面积之间具有怎样的数量关系? 面积边长 第个正方形 第个正方形 第个正方形 2、图中所画的直角三角形的边长分别是多少?请根据面积之间的关系写出边长之间存在的数量关系。 3、与小组成员交流探究结果?并猜想:如果直角三角形两直角边分别为a、b,斜边为c,那么a,b,c具有怎样的数量关系? 4、方法提炼:这种利用面积相等得出直角三角形三边等量关系的方法叫做什么方法? 学生活动:先独立思考,再在小组内互相交流探究结果,并猜想直角三角形的三边关系,最后班级展示。 (三)趣味拼图,验证猜想 教师:请利用四个全等的直角三角形进行拼图。 1、你能拼出哪些图形?能拼出正方形和直角梯形吗? 2、能否就你拼出的图形利用面积法说明a2+b2=c2的合理性?如果可以,请写下自己的推理过程。 学生活动:独立拼图,并思考如何利用图形写出相应的证明过程,再在组内交流算法,最后在班级展示。 (四)课堂训练巩固提升 教师:请完成下列问题,并上台进行展示。 1.在RtABC中,C=900,A,B,C的对边分别为a,b,c 已知a=6,b=8.求c. 已知c=25,b=15.求a. 已知c=9,a=3.求b.(结果保留根号) 学生活动:先独立完成问题,再组内交流解题心得,最后上台展示,其他小组帮助解决问题。 (五)课堂小结,梳理知识 教师:说说自己这节课有哪些收获?请从数学知识、数学方法、数学运用等方向进行总结。 (六)课外涂鸦,延伸课堂 (1)在边长为1的方格纸上任意画一个顶点都在格点上的直角三角形;cab (2)再分别以这个三角形的三边为直径向三角形外作三个半圆,这三个半圆的面积之间有什么关系?看看又会有什么新的数学发现? 17.1.1勾股定理教学反思 勾股定理的探索和证明蕴含着丰富的数学思想和数学方法,是培养学生良好思维品质的最佳载体。它以简洁优美的图形结构,丰富深刻的内涵刻画了自然界的和谐统一的关系,是数形结合的完美典范。著名数学家华罗庚就曾提出把“数形关系”(勾股定理)带到其他星球,作为地球人与其他星球“人”进行第一次“谈话”的语言。为让学生通过对这节课的学习得到更好的历练,在教学时,特别注重从以下几个方面入手: 一、注重知识的自然生发。 传统的教学中,教师往往喜欢压缩理论传授过程,用充足的时间做练习,以题代讲,搞题海战术。但从学生的发展来着,如果压缩数学知识的形成过程,不讲究知识的自然生发,学生获取知识的过程是被动的,形成的体系也是孤立的,长此以往,学生必将错过或失去思维发展和能力提高的机遇。在这节课上,不刻意追求所谓的进度,更没有直接给出勾股定理,而是组织学生开展画一画、看一看、想一想、猜一猜、拼一拼的活动,学生在活动思考、交流、展示中,逐渐的形成了对知识的自我认识和自我感悟。这样做不仅能帮助学生牢固掌握勾股定理,更重要的是使学生体会用自己所学的旧知识而获取新知识过程,使他们获得成功的喜悦,增强了学生主动性,同时他们的思维能力在知识自然形成的过程中不断发展。 二、注重数学课上的操作性学习 操作性学习是自主探究性学习有效途径之一,学生通过在实践活动中的感受和体验,有利于帮助学生理解和掌握抽象的数学知识。在这节课上,首先让学生动手画直角三角形,得出研究题材,然后又让学生利用四个直角三角形拼一拼,验证猜想。这样充分的调动了学生的手、口、脑等多种感官参与数学学习活动,既享受了操作的乐趣,又培养了学生的动手能力,加深了对知识的理解。 三、注重问题设计的开放性 课堂教学是教师组织、引导、参与和学生自主、合作、探究学习的双边活动。这其中教师的“引导”起着关键作用。这里的“引导”,很大程度上靠设疑提问来实现。在教学实践中,问题设计要具有开放性。因为开放性问题更有利于培养学生的创造性思维、体现学生的主体意识和个性差异。本节课在设计涂鸦直角三角形时,安排学生在方格纸上任意涂鸦一个直角三角形;在设计拼图验证环节时,安排学生任意拼出一个正方形或直角梯形,有意没指定画一个具体边长的直角三角形和正方形,就是不想对学生的思维给出太多的限制条件,给出更多的想象和创造空间。虽然探究的时间会更长,但这更符合实际知识的产生环境,学生只有在这样的环境下进行创造、发现和磨练,能力素养才会得到更有效的历练。 四、注重让学生经历完整的数学知识的发现过程。 新数学课程标准在关于课程目标的阐述中,首次大量使用了"经历(感受)、体验(体会)、探索"等刻画数学活动水平的过程性目标动词,就是要求在数学学习的过程中,让学生经历知识与技能形成与巩固过程,经历数学思维的发展过程,经历应用数学能力解决问题的过程,从而形成积极的数学情感与态度。教学从学生感兴趣的涂鸦开始,再经历观察、分析、猜想、验证的全过程,让学生充分的经历了完整的数学知识的发现过程,使学生获得对数学理解的同时,在知识技能、思维能力以及情感态度等多方面都得到了进步和发展。 如果有机会再上这节课,我想我会投入更多的精力对学生可能会给出的答案进行预想,以便在课堂上给予学生更多的启迪,让他们走的更远。一堂课,虽已结束,但对于生命课堂的领悟这条路,还有很长的路要走,我将继续上下求索,做学生更好的支点。 初二下册数学教案勾股定理篇三 一、教材分析: (一)教材的地位与作用 从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。 二、教学与学法分析 教学方法叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。 学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 三、教学过程 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。 首先,情境导入古韵今风 给出七巧八分图中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。 第二步追溯历史解密真相 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。 从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。因此教师应引导学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。 突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面“勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法,“补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。 使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。 以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。 感性认识未必是正确的,推理验证证实我们的猜想。 第三步推陈出新借古鼎新 教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引导者与合作者”这一教学理念。学生会发现两种证明方案。 方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。 教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。 第四步取其精华古为今用 我按照“理解掌握运用”的梯度设计了如下三组习题。 (1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用 第五步温故反思任务后延 在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。 然后布置作业,分层作业体现了教育面向全体学生的理念。 四、教学评价 在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。 五、设计说明 本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。 采用“七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。 猜你感兴趣: 1.八年级下册数学教案人教版 2.沪科版八年级下册数学全教案 3.人教版八年级数学下册教学设计 4.八年级下册数学教案设计 5.北师大版八年级数学下册教案汇总 6.2017八年级下册数学教学设计 第 15 页 共 15 页

    注意事项

    本文([八年级下册数学教案勾股定理]初二下册数学勾股定理.docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开