欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2019-2020学年九年级数学下册“锐角三角函数”教学设计-新人教版.doc

    • 资源ID:13030762       资源大小:287KB        全文页数:16页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2019-2020学年九年级数学下册“锐角三角函数”教学设计-新人教版.doc

    2019-2020学年九年级数学下册“锐角三角函数”教学设计 新人教版本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念)以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。本章重点是锐角三角函数的概念和直角三角形的解法。锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sin A、cos A、tan A表示函数等,学生过去没有接触过,所以对学生来讲有一定难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。一、教科书内容与课程学习目标(一)本章知识结构框图本章知识的展开顺序如下所示:(二)教科书内容本章内容分为两节。第一节主要学习正弦、余弦和正切等锐角三角函数的概念,第二节主要研究直角三角形中的边角关系和解直角三角形的内容。第一节内容是第二节的基础,第二节是第一节的应用,并对第一节的学习有巩固和提高的作用。在28.1节 “锐角三角函数”中,教科书先研究了正弦函数,然后在正弦函数的基础上给出余弦函数和正切函数的概念。对于正弦函数,教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,就是在直角三角形中,已知一个锐角和这个锐角的对边求斜边的问题。由于这个锐角是一个特殊的30°角,所以可以利用“在直角三角形中,30°角所对的边是斜边的一半” 这个结论来解决这个问题。接下去教科书又提出问题:如果30°角所对的边的长度发生改变,那么斜边的长变为多少?解决这个的问题仍然需要利用上述结论。这样就能够使学生体会到“无论直角三角形的大小如何,30°角所对的边与斜边的比总是一个常数”。这里体现了函数的对应思想,即30°角对应数值。接下去,教科书又设置一个“思考”栏目,让学生进一步探讨在直角三角形中,45°角所对的边与斜边的比有什么特点。利用勾股定理就可以发现这个比值也是一个常数。这样就使学生认识到“无论直角三角形的大小如何,45°角所对的边与斜边的比总是一个常数”。通过探讨上面这两个特殊的直角三角形,能够使学生感受到在直角三角形中,如果一个锐角的度数分别是30°和45°,那么它们所对的边与斜边的比都是常数。这里体现了函数的思想,也为引出正弦函数的概念作了铺垫。有了上面这样的感受,会使学生自然地想到,在直角三角形中,一个锐角取其他一定的度数时,它的对边与斜边的比是否也是常数的问题。这样教科书就进入对一般情况的讨论。对于这个问题,教科书设置了一个“探究”栏目,让学生探究对于两个大小不等的直角三角形,如果有一个锐角对应相等,那么这两个相等的锐角所对的直角边与斜边的比是否相等,利用相似三角形对应边成比例这个结论就可以得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值”。由此引出正弦函数的概念。这样引出正弦函数的概念,能够使学生充分感受到函数的思想,即在直角三角形中,对一个锐角的每一个确定的值,sin A都有唯一确定的值与它对应。在引出正弦函数的概念之后,教科书在一个“探究”栏目中,类比正弦的概念,从边与边的比的角度提出一个开放性问题:在直角三角形中,当一个锐角确定时,这个角的对边与斜边的比就随之确定,此时,其他边之间的比是否也确定了呢?提出这个问题的目的是要引出对余弦函数和正切函数的讨论。由于教科书比较详细地讨论了正弦函数的概念,所以对余弦函数和正切函数概念的讨论采用了直接给出的方式,具体的讨论由学生类比正弦函数自己完成。在余弦函数和正切函数的概念给出之后,教科书在边注中分析了锐角三角函数的角与数值之间的对应关系,突出了函数的思想。一些特殊角的三角函数值是经常用到的,教科书借助于学生熟悉的两种三角尺研究了30°、45°、60°角的正弦、余弦和正切值,并以例题的形式介绍了已知锐角三角函数值求锐角的问题,当然这时所要求出的角都是30°、45°和60°这些特殊角。教科书把求特殊角的三角函数值和已知特殊角的三角函数值求角这两个相反方向的问题安排在一起,目的是体现锐角三角函数中角与函数值之间的对应关系。本节最后,教科书介绍了如何使用计算器求非特殊角的三角函数值以及如何根据三角函数值求对应的角等内容。由于不同的计算器操作步骤有所不同,教科书只就常见的情况进行介绍。28.2节“解直角三角形”是在第一节“锐角三角函数”的基础上研究解直角三角形的方法及其在实际中的应用。本节开始,教科书设计了一个实际背景,其中包括两个实际问题,这两个实际问题抽象成数学问题分别是已知直角三角形的一个锐角和斜边求这个角的对边与已知直角三角形的一条直角边和斜边求这两个边的夹角的问题。解决这两个问题需要用到28.1节学习的有关正弦函数和余弦函数的内容。这两个问题实际上属于求解直角三角形的问题,设计这个实际问题的目的是要引出解直角三角形的内容。因此,教科书借助于这个实际问题背景,设计了一个“探究”栏目,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,最后教科书归纳给出求解直角三角形常用的反映三边关系的勾股定理,反映锐角之间关系的互余关系,以及反映边角之间关系的锐角三角函数关系。这样,教科书就结合实际问题背景,探讨了解直角三角形的内容。接下去,教科书又结合四个实际问题介绍了解直角三角形的理论在实际中的应用。第一个实际问题是章前引言中提到的确定比萨斜塔倾斜程度的问题。这个问题实际上是已知直角三角形的斜边和一个锐角的对边,求这个锐角的问题。这要用到正弦函数。第二个问题是确定“神舟”五号变轨后,所能看到地面的最大距离。这个问题实际上是已知直角三角形的斜边和一个锐角的邻边,求这个锐角的问题。这要用到余弦函数。第三个问题是确定楼房高度的问题。这个问题抽象成数学问题是已知直角三角形的一个锐角和它的邻边,求这个角的对边。这要用到正切函数。第四个实际问题是在航海中确定轮船距离灯塔的距离。解决这个问题需要反复利用正弦函数。本节最后,教科书采用将测量大坝的高度与测量山的高度相对比的方式,直观形象地介绍了“化整为零,积零为整”“化曲为直,以直代曲”的微积分的基本思想。(三)课程学习目标 对于本章内容,教学中应达到以下几方面要求。1.了解锐角三角函数的概念,能够正确应用sin A、cos A、tan A表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦和正切的函数值,并会由一个特殊角的三角函数值说出这个角。2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角。3.理解直角三角形中边与边的关系、角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题。4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;通过解直角三角形的学习,体会数学在解决实际问题中的作用,并结合实际问题对微积分的思想有所感受。二、本章编写特点(一)加强与实际的联系本章主要包括锐角三角函数和解直角三角形两大块内容。这两大块内容是紧密联系的。锐角三角函数是解直角三角形的基础,解直角三角形的理论又为解决一些实际问题提供了强有力的工具。解直角三角形为锐角三角函数提供了与实际紧密联系的沃土。因此本章编写时,加强了锐角三角函数与解直角三角形两大块内容与实际的联系。例如,在章前引言中利用确定山坡上所铺设的水管的长度问题引出正弦函数;结合使用梯子攀登墙面问题引出解直角三角形的概念和方法;等等。再有,教科书利用背景丰富有趣的四个实际问题,从不同的角度展示了解直角三角形在实际中的广泛应用。教科书这样将锐角三角函数和解直角三角形的内容与实际问题紧密联系,形成“你中有我,我中有你”的格局,一方面可以让学生体会锐角三角函数和解直角三角形的理论来源于实际,是实际的需要,另一方面也让学生看到它们在解决实际问题中所起的作用,感受由实际问题抽象出数学问题,通过解决数学问题得到数学问题的答案,再回到实际问题的这种实践理论实践的认识过程。这个认识过程符合人的认知规律,有利于调动学生学习数学的积极性,丰富有趣的实际问题也能够激发学生的学习兴趣。(二)加大学生的思维空间,发展学生的思维能力本章编写时一方面继续保持原有的通过设置“观察”“思考”“讨论”“探究”“归纳”等栏目来扩大学生探索交流的空间,发展学生的思维能力。同时结合本章内容的特点,又考虑到学生的年龄特征(学习本章内容的学生已经是九年级),对于本章的一些结论,教科书采用了先设置一些探究性活动栏目,然后直接给出结论的做法,而将数学结论的探索过程完全留给学生,不像前两个年级那样,将这些探究过程通过填空或留白等方式引导学生进行探究。例如,教科书在详细研究了正弦函数,给出正弦函数的概念之后,设置了一个“探究”栏目,并提出问题:“在直角三角形中,当一个锐角确定时,它的对边与斜边的比就随之确定,那么,此时其他边之间的比是否也确定了呢?为什么?”接下去,教科书直接给出了余弦函数和正切函数的概念,而将“邻边与斜边的比、对边与邻边的比也分别是确定的”这个结论的探究过程完全留给学生自己完成。再如,对于30°、45°、60°这几个特殊角的三角函数值,教科书也是首先设置一个“思考”栏目,在栏目中提出问题“两块三角尺中有几个不同的锐角,分别求出这几个锐角的正弦值、余弦值和正切值”,然后教科书用一个表格直接给出了这几个特殊角的三角函数值,而将这些角的三角函数值的求解过程留给学生完成。这样的一种编写方式就为学生提供了更加广阔的探索空间,开阔思路,发展学生的思维能力,有效改变学生的学习方式。 (三)揭示数学内容的本质本章的一个教学目标是使学生理解锐角三角函数的概念,这个概念与学生以前所学的一次函数、反比例函数和二次函数有所不同,它反映的不是数值与数值的对应关系,而是角度与数值之间的对应关系,学生初次接触这种对应关系,理解起来有一定困难,而这种对应关系对学生深刻理解函数的概念又有很大帮助,因此,教科书针对这种情况,加强了对锐角三角函数所反映的角度与数值之间的对应关系的刻画。例如,对于正弦函数,教科书首先研究了在直角三角形中,30°和45°的锐角所对的边与斜边的比分别是常数和,然后就一般情况进行研究,并得出结论:当一个锐角的度数一定时,这个角的对边与斜边的比也是一个常数,这样就突出了锐角与比值的对应关系,即对于每一个锐角,都有一个比值与之对应,从而给出正弦函数的定义。同样,教科书在阐述余弦函数和正切函数时也突出了锐角与“邻边与斜边的比值”之间的对应关系以及锐角与“对边和邻边的比值”之间的对应关系,并在边注进一步强调了这种函数关系:对于锐角A的每一个确定的值,sin A有唯一确定的值与它对应,所以sin A是A的函数。同样地,cos A,tan A也是A的函数。这样,就可以让学生对变量的性质以及变量之间的对应关系有更深刻的认识,加深对函数概念的理解。微积分的思想在数学中占有重要的地位,其基本思想是“化整为零,积零为整”“化曲为直,以直代曲”,这个基本思想是很朴素的,是可以在初等数学中得到反映的。教科书在本章最后,结合解直角三角形的内容,采用与测量大坝的高度和测量山的高度相对比的方式,直观形象地介绍了在确定山的高度时,如何将山坡“化整为零”,如何将山坡的长度“化曲为直、以直代曲”,又如何将每一部分的高度“积零为整”。这样编写的目的是要体现微积分的基本思想,让学生通过直观形象的例子对微积分的基本思想有一个初步的认识。综上所述,本章编写时注意突出数学内容的本质,强调数学思想方法,这有助于提高学生的数学素养。三、几个值得关注的问题(一)注意加强知识间的纵向联系第27章“相似”为本章研究锐角三角函数打下了基础,因为利用“相似三角形的对应边成比例”可以解释锐角三角函数定义的合理性。例如,教科书在研究正弦函数的概念时,利用了“在直角三角形中,30°所对的边等于斜边的一半”,得出了“在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于”。事实上,在直角三角形中,如果一个角等于30°,那么这样的直角三角形都相似。因此,不管这样的三角形的大小如何,它们的对应边都成比例。这也就是说,对于sin 30°=,虽然教科书是从两个特殊的直角三角形(30°的对边分别是70和50)归纳得到的,但这个结论是可以从三角形相似的角度来解释的。同样,对于45°也有类似的情况。当然,教科书利用相似三角形的有关结论解释了在一般情形中正弦定义的合理性。因此,锐角三角函数的内容与相似三角形是密切联系的,教学中要注意加强两者之间的联系。全等三角形的有关理论对理解本章内容有积极的作用。例如,在研究解直角三角形时,教科书通过探索得到结论:事实上,在直角三角形的六个元素中,除了直角,如果再知道两个元素(其中至少有一个是边),这个三角形就确定下来了。这样就可以由已知的两个元素求出其余的三个元素。这个结论的获得实际上利用了直角三角形全等的有关理论,因为对于两个直角三角形,如果已知两个元素对应相等,并且其中有一个元素是边,那么这两个直角三角形就全等,也就是已知一个直角三角形的除直角外的两个元素,其中至少有一个是边,这个三角形就确定下来。所以就可以利用这两个元素求出其余的元素。因此,利用三角形全等的理论,有利于理解解直角三角形的相关内容。教学中要注意加强知识间的相互联系,使学生的学习形成正迁移。另外,本章所研究的锐角三角函数反映了锐角与数值之间的函数关系,这虽然与一次函数、反比例函数以及二次函数所反映的数值与数值之间的对应关系有所不同,但它们都反映了变量之间的对应关系,本质上是一致的。教学时,要注意让学生体会这些不同函数之间的共同特征,更好地理解函数的概念。(二)注意数形结合,自然体现数与形之间的联系数形结合是重要的数学思想和数学方法,本章内容又是数形结合的很理想的材料。例如,对于锐角三角函数的概念,教科书是利用学生对直角三角形的认识(在直角三角形中,30°所对的边等于斜边的一半,45°的直角三角形是等腰直角三角形)以及相似三角形的有关知识引入的,结合几何图形来定义锐角三角函数的概念,将数形结合起来,有利于学生理解锐角三角函数的本质。再比如,解直角三角形在实际中有着广泛的作用,在将这些实际问题抽象成数学问题并利用锐角三角函数解直角三角形时,离不开几何图形,这时往往需要根据题意画出几何图形,通过分析几何图形得到边、角等的关系,再通过计算、推理等使实际问题得到解决。因此在本章教学时,要注意加强数形结合,在引入概念、推理论述、化简计算、解决实际问题时,都要尽量画图帮助分析,通过图形帮助找到直角三角形的边、角之间的关系,加深对直角三角形本质的理解。 四、课时安排本章教学时间约需12课时,具体分配如下:28.1锐角三角函数 约6课时28.2解直角三角形 约4课时数学活动小结 约2课时教学流程图听歌曲,介绍作者展示学习目标及任务小黑板学习方法指导小黑板巡视,适当点拨检测自学效果,指导学生更正并运用出示检测题激情总结放音乐,板书课题创设情境,导入新课 展示学习目标了解学习任务 自学方法指导理解识记学习方法学生自学,教师巡视根据自学提示,自主合作探究 判断他人结论,更正、补充并说明理由检查自学效果完成检测当堂训练小黑板课后完成作业课堂小结 教学设计评价课 堂 教 学 设 计设计要素设 计 内 容教学内容分析教科书首先设置了一个实际问题,把这个实际问题抽象成数学问题,通过思考、探究,得到“在直角三角形中,当锐角的度数一定时,不管三角形的大小如何,这个角的对边与斜边的比是一个固定值”。由此引出正弦函数的概念。教学目标知识与技能1、经历当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实,从而理解正弦的概念。 2、能根据正弦概念正确进行计算过程与方法通过思考和探究,让学生发现“这个角的对边与斜边的比是一个固定值”的过程。情感态度价值观引导学生通过探索数量的比值关系,发现规律,从而培养学习数学的兴趣。学情分析学生初次接触“正弦”的概念,是很难理解的,注意加强对数量关系的比较、分析。教学分析教学重点理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值教学难点难点当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。解决办法结合图形,从实际例子入手,引导学生仔细观察、比较、分析,总结规律。教学策略谈话,讨论,交流,仔细比较,认真分析教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计28.1锐角三角函数(1) 正弦 一、讨论交流:结论:直角三角形中,30°角的对边与斜边的比值 直角三角形中,45°角的对边与斜边的比值 在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比 二、正弦函数概念:规定:在RtABC中,C=90,A的对边记作a,B的对边记作b,C的对边记作c在RtABC中,C=90°,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA教学环节教师活动学生活动教学媒体使用预期效果导入新课 阅读教材73页引言部分,导入新知识。揭示学习目标教师口述学习目标学生自学教师巡视,个别指导学生阅读教材第74至76页内容检测、反馈(1)教师问,74页思考? 75页思考? 75页探究?(回顾三角形相似的判断方法) (2)师生归纳:正弦函数概念(3)教师强调解题的书写格式(1)学生一边思考,一边回答。(2)请一名学生板书75页探究的依据。(3)请两名学生板演例1当堂训练1、77页练习2、在ABC中,C=90°,BC=2,sinA=,则边AC的长是( )A B3 C D 全课小结在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是 在RtABC中,C=90°,我们把锐角A的对边与斜边的比叫做A的 ,记作 ,教学流程图教学设计评价课 堂 教 学 设 计设计要素设 计 内 容教学内容分析余弦、正切仍然是直角三角形的边角关系,学习了正弦概念,余弦、正切的概念是容易掌握的。在此基础上得出锐角三角函数的概念。教学目标知识与技能1、感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。2、能根据余弦、正切的概念,正确进行计算过程与方法逐步培养学生观察、比较、分析、概括的思维能力。情感态度价值观引导学生结合图形,探索数量关系,培养学习数学的兴趣,进一步领会数形结合的思想方法。学情分析在第一课时的基础上,学生对锐角三角函数有了一定的认识,学习余弦、正切的概念,问题不会大。教学分析教学重点理解余弦、正切的概念教学难点难点熟练运用锐角三角函数的概念进行有关计算。解决办法数形结合,理解概念,总结规律教学策略仔细观察、认真比较教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计28.1锐角三角函数(2) 余弦、正切一、正弦的概念:在RtABC中,C=90°,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA二、余弦、正切在RtABC中,C=90°,我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=三、锐角三角函数我们把锐角A的正弦、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数四、计算教学环节教师活动学生活动教学媒体使用预期效果导入新课1、我们是怎样定义直角三角形中一个锐角的正弦的?2、在RtABC中,C=90°,当锐角A确定时,A的对边与斜边的比是 ,现在我们要问:A的邻边与斜边的比呢?A的对边与邻边的比呢?讨论,回答_斜边c_对边a_邻边b_C_B_A揭示学习目标教师口述学习目标学生自学 教师巡视,个别指导学生阅读教材第77至78页内容检查自学效果类似于正弦的情况,教师问,学生答:如图在RtABC中,C=90°,当锐角A的大小确定时,A的邻边与斜边的比、A的对边与邻边的比也分别是确定的我们把A的邻边与斜边的比叫做A的余弦,记作cosA,即cosA=;把A的对边与邻边的比叫做A的正切,记作tanA,即tanA=例如,当A=30°时,我们有cosA=cos30°= ;当A=45°时,我们有tanA=tan45°= (教师讲解并板书):锐角A的正弦、余弦、正切都叫做A的锐角三角函数对于锐角A的每一个确定的值,sinA有唯一确定的值与它对应,所以sinA是A的函数同样地,cosA,tanA也是A的函数_斜边c_对边a_邻边b_C_B_A当堂训练教材78页练习1.2.3.课堂小结本节课的收获学生回答,相互补充布置作业练习册对应的作业教学流程图教学设计评价课 堂 教 学 设 计设计要素设 计 内 容教学内容分析本节内容借助于学生熟悉的两种三角尺研究了30°、45°、60°角的正弦、余弦和正切值,并以例题的形式介绍了已知锐角三角函数值求锐角的问题,当然这时所要求出的角都是30°、45°和60°这些特殊角。教学目标知识与技能熟记30°、45°、60°角的三角函数值,并会由一个特殊角的三角函数值说出这个角的度数。过程与方法逐步培养学生观察、比较、分析、概括的思维能力。情感态度价值观引导学生结合图形,探索数量关系,培养学习数学的兴趣,进一步领会数形结合的思想方法。学情分析只要能够正确理解正弦、余弦、正切的概念,结合图形,写出特殊角的三角函数,就能求出每一个特殊角的三角函数值。教学分析教学重点熟记30°、45°、60°角的三角函数值教学难点难点由一个特殊角的三角函数值说出这个角的度数解决办法结合图形,写出特殊角的三角函数,理解30°、45°、60°角的三角函数值的由来。教学策略讨论,交流,仔细比较,认真分析教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计特殊角的三角函数值1、什么叫做A的锐角三角函数?2、如图,sin30°=cos30°=tan30°= 同理可以得到3、特殊角的三角函数值可列表如下: 角度三角函数值函数名称30°45°60°sincostg1ctg1教学环节教师活动学生活动教学媒体使用预期效果揭示学习目标教师口述学习目标学生自学 教师巡视,个别指导1、学生思考并讨论教材第79的“探究”2、熟记30°、45°、60°角的三角函数值3、学习例3和例4(注意书写格式)检查自学效果1、教师提问,学生回答或板书2、指导学生进一步探究:(1)互余两角的三角函数之间的关系: sin(90°-)=cos, cos(90°-)=sin(2)平方关系:sin2+cos2=11、根据两幅三角板的边与边的关系,写出30°、45°、60°角的三角函数值。2、根据表格中的三角函数值,说出对应的角的度数。(相互提问、交流)当堂训练教材80页得练习指名板演,全班齐练课堂小结学生归纳,相互补充布置作业教学设计评价课 堂 教 学 设 计要素设 计 内 容内容借助计算器求非特殊锐角的三角函数值和由三角函数值来求角的度数教学目标知识与技能让学生熟识计算器一些功能键的使用,会用计算器求锐角的三角函数值和由三角函数值来求角过程与方法 通过计算器的熟练应用,学习数学知识,培养数学能力。情感态度价值观培养学生的动手能力和学习数学的兴趣。学情分析由于学生对计算器的操作比较熟悉,所以学习本节内容不成问题。教学分析教学重点运用计算器处理三角函数中的值或角的问题教学难点难点已知三角函数值来求角的度数解决办法明确概念,不断探索、尝试。教学策略尝试和探究贯穿课堂全过程,重视引导、指导和讲解。教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计用计算器求锐角的三角函数值1、计算:(1)sin30°·cos45°+cos60° (2)tan45°·sin60°-4sin30°·cos45°+·tan30°2、用计算器求三角函数值:(1)sin18° (2)tan30°36 (3)cos55°3、根据三角函数值求角的度数:(1)已知sinA=0.5018,求A的度数;(2)已知cos B=0.6252,求B的度数。4、注意计算器功能键的使用教学环节教师活动学生活动教学媒体使用预期效果导入新课今天我们学习借助计算器求非特殊锐角的三角函数值和由三角函数值来求角的度数。揭示学习目标教师口述学习目标指导学生自学 注意计算器功能键的使用。学生自学教材第80、81页的内容。学生自学教师巡视,个别督查检查自学效果 指名做黑板上的试题,全班齐练。学生归纳更正当堂训练教材第81页练习题课堂小结借助计算器求非特殊锐角的三角函数值的注意事项是什么? 学生回答,相互补充。教学设计评价课 堂 教 学 设 计设计要素设 计 内 容教学内容分析教科书借助于实际问题背景,设计了一个“探究”栏目,要求学生探讨在直角三角形中,根据两个已知条件(其中至少有一个是边)求解直角三角形,最后教科书归纳给出求解直角三角形常用的反映三边关系的勾股定理,反映锐角之间关系的互余关系,以及反映边角之间关系的锐角三角函数关系教学目标知识与技能使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形过程与方法通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力情感态度价值观渗透数形结合的数学思想,培养学生良好的学习习惯学情分析本节内容比较抽象,学生学习会有一定的困难,关键是理解直角三角形中边角之间关系的锐角三角函数关系。教学分析教学重点直角三角形的解法教学难点难点三角函数在解直角三角形中的灵活运用解决办法通过猜测、比较、验证,突破重难点教学策略谈话,讨论,交流,比较,分析教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计解直角三角形1、什么叫解直角三角形?2、直角三角形ABC中,各元素之间的关系:(1)三边之间关系 : a2 +b2 =c2 (勾股定理) (2)锐角之间关系: A+B=90°(3)边角之间关系:教学环节教师活动学生活动教学媒体使用预期效果导入新课 1在三角形中共有几个元素? 2直角三角形ABC中,C=90°,a、b、c、A、B这五个元素间有哪些等量关系呢?今天我们来学习解直角三角形的问题。揭示学习目标教师口述学习目标学生自学教师巡视,个别督查学生阅读教材85页至86页内容检查自学效果按照板书内容提问学生回答,相互补充当堂训练教师督促巡视,批改先做完的学生作业1、学生板书例1、例22、教材87页练习课堂小结小结“已知一边一角,如何解直角三角形?”学生归纳本节课的收获教学设计评价课 堂 教 学 设 计设计要素设 计 内 容教学内容分析通过确定“神舟”五号变轨后,所能看到地面的最大距离,这一实际问题,来探索直角三角形中边与角的关系,即解直角三角形的应用。教学目标知识与技能使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题过程与方法 通过解直角三角形的学习,体会数学在解决实际问题中的作用, 逐步培养学生分析问题、解决问题的能力情感态度价值观渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识学情分析本节内容的难点是实际问题转化成数学模型,学生学习是有一定难度的。教学分析教学重点将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决教学难点难点实际问题转化成数学模型解决办法通过观察、比较及数形结合的思想方法突破重难点教学策略动手操作,比较,归纳教学资源教材 教师教学用书 中学教材全解 与教材配套的练习册板书设计解直角三角形(2)1、解直角三角形指什么? 2、解直角三角形主要依据什么? (1)勾股定理理:  (2)锐角之间的关系: (3)边角之间的关系:3、什么是仰角、俯角?4、例题教学环节教师活动学生活动教学媒体使用预期效果揭示学习目标教师口述学习目标学生认真听,用心记学生自学出示自学提纲按板书提示进行预习,教材87、88页.检查自学效果指名板书,相互补充当堂训练督促巡视,批改先做完的学生作业教材89页练习,指名板演,全班齐练课堂小结本节课我的收获: 先由学生归纳,教师再补充。

    注意事项

    本文(2019-2020学年九年级数学下册“锐角三角函数”教学设计-新人教版.doc)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开