欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    数列常见题型总结经典超级经典汇编.docx

    • 资源ID:13062371       资源大小:232.17KB        全文页数:16页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数列常见题型总结经典超级经典汇编.docx

    精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料高中数学数列常见、常考题型总结题型一数列通项公式的求法可编辑资料 - - - 欢迎下载精品名师归纳总结1前 n 项和法(知Sn 求an ) anS1n1SnSn 1n2可编辑资料 - - - 欢迎下载精品名师归纳总结例 1、已知数列 an 的前 n 项和 Sn12nn 2 ,求数列 |an | 的前 n 项和 Tn可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结1、如数列 a n 的前 n 项和S2n ,求该数列的通项公式。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2、如数列 a n 的前 n 项和 Sn33 ,求该数列的通项公式。 2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3、设数列 a n 的前 n 项和为Sn ,数列 Sn 的前 n 项和为Tn ,满意 Tn2 Snn 2 ,可编辑资料 - - - 欢迎下载精品名师归纳总结求数列 a n 的通项公式。可编辑资料 - - - 欢迎下载精品名师归纳总结2. 形如 an 1anf n 型(累加法)可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)如 fn为常数 , 即:a n 1a nd , 此时数列为等差数列,就a n =a1n1d .可编辑资料 - - - 欢迎下载精品名师归纳总结( 2)如 fn为 n 的函数时,用累加法.3 n1可编辑资料 - - - 欢迎下载精品名师归纳总结例 1.已知数列 an满意 a11, a n3 n 1a n 1 n2 , 证明 a n2可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结nan学习资料 名师精选 - - - - - - - - - -第 1 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -n学习 - 好资料可编辑资料 - - - 欢迎下载精品名师归纳总结1. 已知数列an的首项为1,且an 1a2nnN * 写出数列an的通项公式 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2. 已知数列 a n 满意 a13 , a na n 11 nnn12 ,求此数列的通项公式.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3. 形如an 1a nf n 型(累乘法)an 1n 1可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)当 fn为常数,即:q (其中 q 是不为 0 的常数),此数列为等比且an( 2)当 fn为 n 的函数时 , 用累乘法 .na n = a1q.可编辑资料 - - - 欢迎下载精品名师归纳总结例 1、在数列 a n 中 a11, anan 1n2 ,求数列的通项公式。可编辑资料 - - - 欢迎下载精品名师归纳总结n1n1可编辑资料 - - - 欢迎下载精品名师归纳总结1、在数列 an 中 a11, anan 1n2 ,求a n与Sn 。可编辑资料 - - - 欢迎下载精品名师归纳总结n1可编辑资料 - - - 欢迎下载精品名师归纳总结2、求数列 a11, an2n3 an2n11 n2 的通项公式。可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料可编辑资料 - - - 欢迎下载精品名师归纳总结4. 形如 anpan1型(取倒数法)可编辑资料 - - - 欢迎下载精品名师归纳总结例 1.已知数列ra n 1sa n中, a12 , anan 1 n2 ,求通项公式a n可编辑资料 - - - 欢迎下载精品名师归纳总结2an 11可编辑资料 - - - 欢迎下载精品名师归纳总结练习: 1、如数列 an 中, a11 , a n 1a n3a n, 求通项公式1an .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2、如数列 an 中, a11 , a n 1an2an an1 ,求通项公式a n .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结5形如an 1cand , c0 , 其中 a1a 型(构造新的等比数列)可编辑资料 - - - 欢迎下载精品名师归纳总结( 1)如 c=1 时,数列 a n 为等差数列 ; ( 2)如 d=0 时,数列 a n 为等比数列 ;可编辑资料 - - - 欢迎下载精品名师归纳总结( 3)如 c1且d0 时,数列 a n 为线性递推数列,其通项可通过待定系数法构造帮助数列来求.可编辑资料 - - - 欢迎下载精品名师归纳总结方法如下:设an 1Ac anA , 利用待定系数法求出A可编辑资料 - - - 欢迎下载精品名师归纳总结例1已知数列 a n 中, a112, a n 1a n21 , 求通项2an .可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料可编辑资料 - - - 欢迎下载精品名师归纳总结练习: 1、如数列 an 中, a12 , a n 12a n1, 求通项公式an 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3、如数列 an 中, a121n1 , ana 31 , 求通项公式an 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结6. 形如 a n 1pa nf n 型(构造新的等比数列)可编辑资料 - - - 欢迎下载精品名师归纳总结(1) 如f nknb 一次函数 k,b是常数,且k0 , 就后面待定系数法也用一次函数。可编辑资料 - - - 欢迎下载精品名师归纳总结例题 .在数列 an 中, a13 , 2an2an 16n3, 求通项a n .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结练习: 1、已知数列a n中, a13 , an 13an4 n2 ,求通项公式an可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(2) 如f nq n 其中 q 是常数,且n0,1可编辑资料 - - - 欢迎下载精品名师归纳总结如 p=1 时,即:a n 1anq n ,累加即可可编辑资料 - - - 欢迎下载精品名师归纳总结如 p1 时,即:a n 1p a nq n ,后面的待定系数法也用指数形式。可编辑资料 - - - 欢迎下载精品名师归纳总结n 1an 1pan1可编辑资料 - - - 欢迎下载精品名师归纳总结两边同除以q .即:q n 1,qq nq可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料anp1可编辑资料 - - - 欢迎下载精品名师归纳总结令 bn, 就可化为q nb n 1bn. 然后转化为类型5 来解,qq可编辑资料 - - - 欢迎下载精品名师归纳总结例1.在数列 an 中, a125 ,且 an2an 1n 13nN 求通项公式an可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结1、已知数列a n中, a11, 2a n2a n 1 1 n2,求通项公式an 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2、已知数列a n中, a11 , a n 13a n3 2 n ,求通项公式a n 。可编辑资料 - - - 欢迎下载精品名师归纳总结题型二依据数列的性质求解(整体思想)可编辑资料 - - - 欢迎下载精品名师归纳总结1、已知Sn 为等差数列a n的前 n 项和, a6100 ,就S11。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结2、设S 、 T 分别是等差数列a、 b的前 n 项和, Sn7n2 ,就 a5.可编辑资料 - - - 欢迎下载精品名师归纳总结nnnnTnn3b5可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 5 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料可编辑资料 - - - 欢迎下载精品名师归纳总结3、设Sn 是等差数列a5a n的前 n 项和,如a 35 ,就 S9()9S5可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结5、在正项等比数列an中,a1a52a3 a5a3a725 ,就 a3a5 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结6、已知Sn 为等比数列a n前 n 项和, Sn54 , S2 n60 ,就S3 n.可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结7、在等差数列a n中,如 S41, S84 ,就a17a18a19a 20 的值为()可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结8、在等比数列中,已知a9a10a a0 , a19a20b ,就a99a100.可编辑资料 - - - 欢迎下载精品名师归纳总结题型三:证明数列是等差或等比数列可编辑资料 - - - 欢迎下载精品名师归纳总结A 证明数列等差例 1、已知数列 a 的前 n 项和为 S ,且满意a+2S ·S 1=0( n 2), a =.求证: 1 是等差数列。可编辑资料 - - - 欢迎下载精品名师归纳总结nnnnn 112Sn可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结B)证明数列等比例 1、已知数列a满意 a1,a3, a3a2anN * .可编辑资料 - - - 欢迎下载精品名师归纳总结n12n 2n 1n可编辑资料 - - - 欢迎下载精品名师归纳总结证明:数列an 1an是等比数列。求数列an的通项公式。可编辑资料 - - - 欢迎下载精品名师归纳总结题型四:求数列的前n 项和基本方法: A )公式法, 更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 6 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料B)分组求和法可编辑资料 - - - 欢迎下载精品名师归纳总结1、求数列2 n2n3 的前 n 项和Sn .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结11111C )裂项相消法,数列的常见拆项有: 。n1n 。可编辑资料 - - - 欢迎下载精品名师归纳总结例 1、求和: S=1+1nnk1knnk1nn1可编辑资料 - - - 欢迎下载精品名师归纳总结12123123n可编辑资料 - - - 欢迎下载精品名师归纳总结例2、求和:1112132431.n1n可编辑资料 - - - 欢迎下载精品名师归纳总结D )倒序相加法,11x2可编辑资料 - - - 欢迎下载精品名师归纳总结32例、设f x1x2,求:f 2021 f 2021 f 1 f 1 f 2f 2021f 2021.可编辑资料 - - - 欢迎下载精品名师归纳总结E )错位相减法,可编辑资料 - - - 欢迎下载精品名师归纳总结1、如数列a n的通项 an2n13n ,求此数列的前n 项和Sn .可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 7 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -学习 - 好资料可编辑资料 - - - 欢迎下载精品名师归纳总结3.4.Sn12 x3x2nxn1 x0(将分为 x1和 x1 两种情形考虑)可编辑资料 - - - 欢迎下载精品名师归纳总结更多精品文档可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 8 页,共 8 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载

    注意事项

    本文(数列常见题型总结经典超级经典汇编.docx)为本站会员(H****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开