2019-2020学年高二数学《等差数列的前n项和》教学设计.doc
-
资源ID:13077180
资源大小:290KB
全文页数:4页
- 资源格式: DOC
下载积分:6金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019-2020学年高二数学《等差数列的前n项和》教学设计.doc
2019-2020学年高二数学等差数列的前n项和教学设计一、内容与解析 (一)内容:等差数列的前项公式及其应用(二)解析:等差数列的前项和是数列的重要内容,也是数列研究的基本问题在现实生活中,等差数列的求和是经常遇到的一类问题等差数列的求和公式,为我们求等差数列的前项和提供了一种重要方法教材首先通过具体的事例,探索归纳出等差数列前项和的求法,接着推广到一般情况,推导出等差数列的前项和公式为深化对公式的理解,通过对具体例子的研究,弄清等差数列的前项和与等差数列的项、项数、公差之间的关系,并能熟练地运用等差数列的前项和公式解决问题这节内容重点是探索掌握等差数列的前项和公式,并能应用公式解决一些实际问题,难点是前项和公式推导思路的形成二、教学目标及解析1. 通过等差数列前项和公式的推导,让学生体验数学公式产生、形成的过程,培养学生抽象概括能力2. 理解和掌握等差数列的前项和公式,体会等差数列的前项和与二次函数之间的联系,并能用公式解决一些实际问题,培养学生对数学的理解能力和逻辑推理能力3. 在研究公式的形成过程中,培养学生的探究能力、创新能力和科学的思维方法三、问题诊断分析对公式的推导,为便于学生理解,采取从特殊到一般的研究方法比较适宜,如从历史上有名的求和例子123100的高斯算法出发,一方面引发学生对等差数列求和问题的兴趣,另一方面引导学生发现等差数列中任意的第项与倒数第项的和等于首项与末项的和这个规律,进而发现求等差数列前项和的一般方法,这样自然地过渡到一般等差数列的求和问题对等差数列的求和公式,要引导学生认识公式本身的结构特征,弄清前项和与等差数列的项、项数、公差之间的关系为加深对公式的理解和运用,要强化对实例的教学,并通过对具体实例的分析,引导学生学会解决问题的方法特别是对实际问题,要引导学生从实际情境中发现等差数列的模型,恰当选择公式对于等差数列前项和公式和二次函数之间的联系,可引导学生拓展延伸四、教学过程(一)创设情景,唤起学生知识经验的感悟和体验有一组袋子,第一个袋子里面有一个球,后一个袋子比前一个袋子多一个相同个数的球,求(1)袋子里球的个数;(2)前50个袋子里共有多少球。 设计意图 情境学习理论认为:数学学习总是与一定的知识背景,即“情境”相联系从实际问题入手,图中蕴含算数,能激发学生学习新知识的兴趣,并且可引导学生共同探讨高斯算法更一般的应用,为新课的讲解作铺垫知识链接 高斯,德国著名数学家,被誉为“数学王子”。200多年前,高斯的算术教师提出了下面的问题:123+100?据说,当其他同学忙于把100个数逐项相加时,10岁的高斯却用下面的方法迅速算出了正确答案:(1100)(299)(5051)101×505050.学情预设高斯的算法蕴涵着求等差数列前n项和一般的规律性教学时,应给学生提供充裕的时间和空间,让学生自己去观察、探索发现这种数列的内在规律学生对高斯的算法是熟悉的,知道采用首尾配对的方法来求和,但估计他们对这种方法的认识可能处于记忆阶段,为了促进学生对这种算法的进一步理解,设计了以下三道由易到难的问题(二)由易到难,在自主探究与合作中学习问题1:若第一个袋子里有一个球,后一个袋子比前一个袋子多一个球,则前51个袋子里共有多少球?该题组织学生分组讨论,在合作中学习,并把小组发现的方法一一呈现学情预设 学生可能出现以下求法方法1:原式(12350)51方法2:原式0125051方法3:原式(12252751)26以上方法实际上是用了“化归思想”,将奇数个项问题转化为偶数个项求解,教师应进行充分肯定与表扬设计意图 这是求奇数个项和的问题,若简单地摹仿高斯算法,将出现不能全部配对的问题,借此渗透化归思想问题2:前n个袋子里共有(1n 100,nN*)共有多少球?学情预设 学生通过激烈的讨论后,发现n为奇数时不能配对,可能会分n为奇数、偶数的情况分别求解,教师如何引导学生避免讨论成为该环节的关键设计意图 从求确定的前n个正整数之和到求一般项数的前n个正整数之和,让学生领会从特殊到一般的研究方法,旨在让学生对“首尾配对求和”这一算法的改进启发:(多媒体演示)如右图,在三角形图案右侧倒放一个全等的三角形与原图补成平行四边形设计意图 借助几何图形的直观性,能启迪思路,唤醒学生记忆深处的东西,并为倒序相加法的出现提供了一个直接的模型通过以上启发学生再自主探究,相信容易得出解法:1 + 2 + 3 +(n1)+ n n +(n1)+ (n2)+ + 2 + 1_ (n+1) + (n+1) + (n+1) + +(n+1) + (n+1)1+2+3+n=问题3: 在公差为d的等差数列an中,前n项和Sn=a1+a2+an,如何求Sn?由前面的大量铺垫,学生应容易得出如下过程:Sn=a1 + (a1+d) + (a1+2d) +a1+(n1)d Sn=an + (and) +(an2d)+an(n1)d (公式1)组织学生讨论:在公式1中若将an=a1+(n1)d代入又可得出哪个表达式?即:(公式2)(三)设置典例,促进学生对公式的应用对于以上两个公式,初学的学生在解决一些问题时,往往不知道该如何选取教师应通过适当的例子引导学生对这两个公式进行分析,根据公式各自的特点,帮助学生恰当地选择合适的公式例1、为了参加冬季运动会的5000m长跑比赛,某同学给自己制定了7天的训练计划(单位:m)如下表:5000550060006500700075008000问这个同学7天一共将跑多长的距离?设计意图 该例题是将课本P53习题2.3A组第3题改编成表格形式,可以锻炼学生处理数据信息的能力和选用公式的能力。学生可以从首项、末项、项数出发,选用公式1;也可以从首项、公差、项数出发,选用公式2,通过两种方法的比较,引导学生在解题时注意选择适当的公式,以便于计算例2、已知等差数列5,4 ,3 ,求:(1)数列an的通项公式;(2)数列an的前几项和为;(3)Sn的最大值为多少?并求出此时相应的n的值。设计意图 通项公式与求和公式中共有a1、d、n、an、Sn五个基本元素,如果已知其中三个,就可求其余两个,主要是训练学生的方程(组)思想。第(3)小题是让学生初步接触用函数观点解决数列问题,为以后函数与数列的综合打下基础知识链接(1)由若令可知当时,点是在常数项为0的二次函数图象上,可由二次函数的知识解决的最值问题;(2)若数列的前n项和(),则数列一定是等差数列;(4)在等差数列中,当时,最大,当时,最小。(四)反馈调控,实现学生对知识的掌握练习1 已知等差数列an的前10项和是310,前20项的和是1220,求前n项和Sn.练习2 等差数列an中,a1=4,a8=18,求公差d及前n项和Sn. 设计意图 分层练习使学生在完成必修教材基本任务的同时,拓展自主发展的空间,让每一个学生都得到符合自身实践的感悟,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而实现“以人为本”的教育理念(五)回顾反思,深化知识组织学生分组共同反思本节课的教学内容及思想方法,小组之间互相补充完成课堂小结,实现对等差数列前n项和公式的再次深化1.从特殊到一般的研究方法;2.体会倒序相加的算法,掌握等差数列的两个求和公式,领会方程(组)思想;3. 前n项和公式的函数意义4、用梯形面积公式记忆等差数列的前n项和公式;五、课堂目标检测优化设计自我测评六、课堂小结及作业布置小结:1.本节课学习了等差数列的前n项和公式及其应用2.本节课中用到了函数与方程的思想、倒序相加法、构建模型法等数学思想及方法。作业:优化作业