2019-2020学年高考数学一轮复习《不等式证明》(一)学案.doc
-
资源ID:13085424
资源大小:380KB
全文页数:5页
- 资源格式: DOC
下载积分:6金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2019-2020学年高考数学一轮复习《不等式证明》(一)学案.doc
2019-2020学年高考数学一轮复习不等式证明(一)学案基础过关1比较法是证明不等式的一个最基本的方法,分比差、比商两种形式(1)作差比较法,它的依据是: 它的基本步骤:作差变形判断,差的变形的主要方法有配方法,分解因式法,分子有理化等(2) 作商比较法,它的依据是:若>0,>0,则典型例题例1. 已知,求证:证法1:>0,>0, 即 证法2:1 故原命题成立,证毕变式训练1:已知a、b、x、yR+且,xy.求证:解:证法一:(作差比较法) ,又且a、bR+,ba0.又xy0,bxay.0,即.证法二:(分析法)x、y、a、bR+,要证,只需证明x(y+b)y(x+a),即证xbya.由0,ba0. 又xy0,知xbya显然成立.故原不等式成立.例2. 已知a、bR+,求证: 变式训练3:若为ABC的三条边,且,则( )A B C D答案:D解析:,又。例4. 设二次函数,方程的两个根、满足(1) 当x(0,x1)时,证明:x<f (x)<x1(2) 设函数f (x)的图象关于直线xx0对称,证明:x0<证明:(1)由于、是方程的两个根,则 当时,有 又 即又由 得 又 , 即综上所述,(2) 变式训练4:设f(x)=3ax,f(0)0,f(1)0,求证:(1)a0且-2-1;(2)方程f(x)=0在(0,1)内有两个实根. 证明:(1)因为,所以.由条件,消去,得;由条件,消去,得,.故.(2)抛物线的顶点坐标为,在的两边乘以,得.又因为而所以方程在区间与内分别有一实根。故方程在内有两个实根.归纳小结1比较法是证明不等式的一个最基本的方法,而又以作差比较最为常见作差比较的关键在于作差后如何变形来达到判断差值符号之目的,变形的方向主要是因式分解和配方2综合法证明不等式要找出条件和结论之间的内在联系,为此要着力分析已知与求证之间,不等式左右两端的差异和联系,合理进行变换,去异存同,恰当选择已知不等式,找到证题的突破口3分析法是“执果索因”重在对命题成立条件的探索,寻求不等式成立的充分条件,因此有时须先对原不等式化简常用的方法有:平方,合并,有理化去分母等但要注意所有这些变形必须能够逆推,书写格式要严谨规范4分析法和综合法是对立统一的两个方法在不等式的证明中,我们常用分析法探索证明的途径后,用综合法的形式写出证明过程这种先分析后综合的思路具有一般性,是解决数学问题的一种重要数学思想