欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学数学概念公式数量关系进率大全(共12页).docx

    • 资源ID:13282605       资源大小:26.86KB        全文页数:12页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学数学概念公式数量关系进率大全(共12页).docx

    精选优质文档-倾情为你奉上小学数学概念公式规律进率汇总一  概念 (一)整数 1、 整数的意义  自然数和0都是整数。   2、 自然数  我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。   一个物体也没有,用0表示。0也是自然数。   3、计数单位  一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。   每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。   4 、数位  计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。   5、数的整除 整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。如果数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。   一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除。   个位上是0或5的数,都能被5整除。   一个数的各位上的数的和能被3整除,这个数就能被3整除。 一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。 一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。 一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。   能被2整除的数叫做偶数。  不能被2整除的数叫做奇数。   0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。 一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。   一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12都是合数。 1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。   每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5 叫做15的质因数。   把一个合数用质因数相乘的形式表示出来,叫做分解质因数。 几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。 公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况: 1和任何自然数互质。 相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。 两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。 如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。   如果两个数是互质数,它们的最大公约数就是1。   几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、18 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。   如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。 如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。   几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数 1 小数的意义   把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。   一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几   一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。   在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。   2、小数的分类   纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。   带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。 有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。 无限小数:小数部分的数位是无限的小数,叫做无限小数。 例如: 4.33 3. 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如: 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.    一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。   纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 0.5656    混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 简写作  0. 简写作  。 (三)分数 1 、分数的意义   把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。   在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。   把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。   2 分数的分类   真分数:分子比分母小的分数叫做真分数。真分数小于1。   假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。   带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。   3、 约分和通分   把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。   分子分母是互质数的分数,叫做最简分数。   把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。   (四)百分数 1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。  二  方法 (一)数的读法和写法    1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。    2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。   3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。   4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次写出每一个数位上的数字。 5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。   6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。   7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。   8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。   (二)数的改写   一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。   1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 改写成以万做单位的数是 万;改写成 以亿做单位 的数 12.543 亿。   2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 省略亿后面的尾数是 13 亿。   3. 四舍五入法:要省略的尾数的最高位上的数是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 万后面的尾数约是 35 万。省略 亿后面的尾数约是 47 亿。   4. 大小比较   1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。   2. 比较小数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大   3. 比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。   (三)数的互化   1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。   2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。   3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。   4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。   5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。   6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。   7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。   (四)数的整除   1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。   2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。   3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。   4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质;  当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。   (五) 约分和通分   约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。   通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 三  性质和规律 (一)商不变的规律   商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。   (二)小数的性质   小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。   (三)小数点位置的移动引起小数大小的变化 1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍   2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍   3. 小数点向左移或者向右移位数不够时,要用“0"补足位。     (四)分数的基本性质   分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。   (五)分数与除法的关系 1. 被除数÷除数=  被除数/除数   2. 因为零不能作除数,所以分数的分母不能为零。   3. 被除数 相当于分子,除数相当于分母。四 运算的意义 (一)整数四则运算 1整数加法: 把两个数合并成一个数的运算叫做加法。   在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。   加数+加数=和   一个加数=和另一个加数   2整数减法: 已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。   在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。   加法和减法互为逆运算。   3整数乘法: 求几个相同加数的和的简便运算叫做乘法。   在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。   在乘法里,0和任何数相乘都得0.   1和任何数相乘都的任何数。   一个因数× 一个因数 =积      一个因数=积÷另一个因数   4  整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。   在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。   乘法和除法互为逆运算。   在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。   被除数÷除数=商  除数=被除数÷商  被除数=商×除数   (二)小数四则运算 1. 小数加法: 小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。   2. 小数减法: 小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.   3. 小数乘法: 小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。   4. 小数除法: 小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。   (三)分数四则运算   1. 分数加法: 分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。   2. 分数减法: 分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。   3. 分数乘法: 分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。   4. 乘积是1的两个数叫做互为倒数。   5. 分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。    (四)运算定律   1. 加法交换律: 两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。   2. 加法结合律: 三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。   3. 乘法交换律: 两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。   4. 乘法结合律: 三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。 5. 乘法分配律: 两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c 。   6. 减法的性质: 从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c) 。(五)运算法则   1. 整数加法计算法则: 相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。   2. 整数减法计算法则: 相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。   3. 整数乘法计算法则: 先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。   4. 整数除法计算法则: 先从被除数的高位除起,除数是几位数,就看被除数的前几位; 如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。   5. 小数乘法法则: 先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。    6. 除数是整数的小数除法计算法则: 先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。   7. 除数是小数的除法计算法则: 先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。    8. 同分母分数加减法计算方法: 同分母分数相加减,只把分子相加减,分母不变。   9. 异分母分数加减法计算方法: 先通分,然后按照同分母分数加减法的的法则进行计算。   10. 带分数加减法的计算方法: 整数部分和分数部分分别相加减,再把所得的数合并起来。   11. 分数乘法的计算法则: 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。   12. 分数除法的计算法则: 甲数除以乙数(0除外),等于甲数乘乙数的倒数。   (一)什么是面积 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。   (一)什么是体积、容积 体积,就是物体所占空间的大小。   容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积   四  时间 是指有起点和终点的一段时间。质量,就是表示表示物体有多重 三、解方程   解方程,求方程的解的过程叫做解方程。   四、列方程解应用题   1 列方程解应用题的意义   * 用方程式去解答应用题求得应用题的未知量的方法。   3列方程解应用题的方法   * 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。   * 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。   六 比和比例   1比的意义和性质   (1) 比的意义   两个数相除又叫做两个数的比。   “:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。   同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。   比值通常用分数表示,也可以用小数表示,有时也可能是整数。   比的后项不能是零。   根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 七 小学数学公式: 1、长方形的周长=(长+宽)×2 C=(a+b)×2 2、正方形的周长=边长×4 C=4a 3、长方形的面积=长×宽 S=ab 4、正方形的面积=边长×边长 S=a.a= a 5、三角形的面积=底×高÷2 S=ah÷2 6、平行四边形的面积=底×高 S=ah 7、梯形的面积=(上底+下底)×高÷2 S=(ab)h÷2 8、直径=半径×2 d=2r 半径=直径÷2 r= d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2 c=d =2r 10、圆的面积=圆周率×半径×半径     =r 11、长方体的表面积=(长×宽+长×高宽×高)×2 12、长方体的体积 =长×宽×高        V =abh 13、正方体的表面积=棱长×棱长×6    S =6a 14、正方体的体积=棱长×棱长×棱长    V=a.a.a= a 15、圆柱的侧面积=底面圆的周长×高     S=ch 16、圆柱的表面积=上下底面面积+侧面积 S=2r +2rh =2(d÷2) +2(d÷2)h =2(C÷2÷) +Ch 17、圆柱的体积=底面积×高 V=Sh V=r h=(d÷2)             h=(C÷2÷) h 18、圆锥的体积=底面积×高÷3 V=Sh÷3=r h÷3=(d÷2) h÷3=(C÷2÷) h÷3 19、长方体(正方体、圆柱体)的体积: 小学数学图形计算公式: 1 、正方形: 周长边长×4           C=4a 面积=边长×边长         S=a×a 2 、正方体:    表面积=棱长×棱长×6           S表=a×a×6 体积=棱长×棱长×棱长          V=a×a×a 3 、长方形 周长=(长+宽)×2             C=2(a+b) 面积=长×宽                 S=ab 4 、长方体 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高          V=abh 5 三角形 面积=底×高÷2             s=ah÷2 三角形高=面积 ×2÷底   三角形底=面积 ×2÷高 6 平行四边形     面积=底×高             s=ah 7 梯形 面积=(上底+下底)×高÷2   s=(a+b)× h÷2 8 圆形 (1)周长=直径×=2××半径   C=d=2r (2)面积=半径×半径×         s=r 9 圆柱体 (1)侧面积=底面周长×高  (2)表面积=侧面积+底面积×2 (3)体积=底面积×高     (4)体积侧面积÷2×半径 10 圆锥体 体积=底面积×高÷3 和差问题 (和差)÷2大数            (和差)÷2小数 和倍问题 和÷(倍数1)小数          小数×倍数大数 (或者 和小数大数) 差倍问题 差÷(倍数1)小数          小数×倍数大数 (或 小数差大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么: 株数段数1全长÷株距1 全长株距×(株数1)         株距全长÷(株数1) 如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数段数全长÷株距 全长株距×株数  株距全长÷株数 如果在非封闭线路的两端都不要植树,那么: 株数段数1全长÷株距1 全长株距×(株数1)         株距全长÷(株数1) 2 封闭线路上的植树问题的数量关系如下 株数段数全长÷株距 全长株距×株数              株距全长÷株数 相遇问题 相遇路程速度和×相遇时间 相遇时间相遇路程÷速度和 速度和相遇路程÷相遇时间 追及问题 追及距离速度差×追及时间 追及时间追及距离÷速度差 速度差追及距离÷追及时间 浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量÷溶液的重量×100%浓度 溶液的重量×浓度溶质的重量 溶质的重量÷浓度溶液的重量 利润与折扣问题 利润售出价成本 利润率利润÷成本×100%(售出价÷成本1)×100% 涨跌金额本金×涨跌百分比 折扣实际售价÷原售价×100%(折扣1) 利息本金×利率×时间 税后利息本金×利率×时间×(120%) 八 进率面积,体积换算 (1)1公里1千米 1千米1000米 1米10分米 1分米10厘米 1厘米10毫米 (2)1平方米100平方分米 1平方分米100平方厘米 1平方厘米100平方毫米 (3)1立方米1000立方分米 1立方分米1000立方厘米 1立方厘米1000立方毫米 (4)1公顷10000平方米 1亩666.666平方米 (5)1升1立方分米1000毫升 1毫升1立方厘米 * 重量换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 * 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 专心-专注-专业

    注意事项

    本文(小学数学概念公式数量关系进率大全(共12页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开