欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    求向量组的秩与极大无关组(修改整理)(共7页).doc

    • 资源ID:13294941       资源大小:533KB        全文页数:7页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    求向量组的秩与极大无关组(修改整理)(共7页).doc

    精选优质文档-倾情为你奉上求向量组的秩与最大无关组一、 对于具体给出的向量组,求秩与最大无关组1、求向量组的秩(即矩阵的秩)的方法:为阶梯形矩阵【定理】 矩阵的行秩等于其列秩,且等于矩阵的秩.(三秩相等)把向量组的向量作为矩阵的列(或行)向量组成矩阵A;对矩阵A进行初等行变换化为阶梯形矩阵B;阶梯形B中非零行的个数即为所求向量组的秩【例1】 求下列向量组a=(1, 2, 3, 4),a2 =( 2, 3, 4, 5),a3 =(3, 4, 5, 6)的秩.解1:以a,a,a为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的列秩为2,所以向量组的秩为2 解2:以a,a,a为行向量作成矩阵A,用初等行变换将A化为阶梯形矩阵后可求.因为阶梯形矩阵的行秩为2,所以向量组的秩为22、求向量组的最大线性无关组的方法方法1 逐个选录法 给定一个非零向量组A:a1, a2, an 设a1¹ 0,则a1线性相关,保留a1 加入a2,若a2与 a1线性相关,去掉a2;若a2与 a1线性无关,保留a1 ,a2;依次进行下去,最后求出的向量组就是所求的最大无关组【例2】求向量组:的最大无关组解:因为a1非零,故保留a1 取a2,因为a1与a2线性无关,故保留a1,a2取a3,易得a3=2a1+a2,故a1,a2 ,a3线性相关。所以最大无关组为a1,a2方法2 初等变换法 【定理】 矩阵A经初等行变换化为B,则B的列向量组与A对应的列向量组有相同的线性相关性.证明从略,下面通过例子验证结论成立.向量组:a1=(1,2,3)T, a2=(-1,2,0)T, a3=(1,6,6)T由上可得,求向量组的最大线性无关组的方法: (1)列向量行变换把向量组的向量作为矩阵的列向量组成矩阵A;对矩阵A进行初等行变换化为阶梯形矩阵B;A中的与B的每阶梯首列对应的向量组,即为最大无关组【例3】求向量组 :a1=(2,1,3,-1)T, a2=(3,-1,2,0)T, a3=(1,3,4,-2)T, a4=(4,-3,1,1)T 的秩和一个最大无关组, 并把不属于最大无关组的向量用最大无关组线性表示。解 以a1,a2,a3,a4为列构造矩阵A, 并实施初等行变换化为行阶梯形矩阵求其秩: 知r(A)=2, 故向量组的最大无关组含2个向量 而两个非零行的非零首元分别在第1, 2列, 故a1,a2为向量组的一个最大无关组 事实上, 知r(a1,a2)=2, 故a1,a2 线性无关为把a3,a4用a1,a2线性表示, 把A变成行最简形矩阵 记矩阵B=(b1, b2, b3, b4),因为初等行变换保持了列向量间的线性表出性,因此向量a1,a2,a3,a4与向量b1, b2, b3, b4之间有相同的线性关系。因此a3=2a1-a2, a4=-a1+2a2 【例4】求下列向量组的一个最大无关组,其中:解:以给定向量为列向量作成矩阵A,用初等行变换将A化为阶梯形矩阵B 再利用初等行变换,将B再化成行最简形矩阵C.初等矩阵A, B, C初等变换行作为求秩无关 B 中见线性无关 C 做陪用最大线性无关组表示其它向量的方法为:把向量组的向量作为矩阵的列向量组成矩阵A;对矩阵A进行初等行变换化为阶梯形矩阵B;把阶梯形B进行初等行变换化为行最简形矩阵C;根据行最简形矩阵列向量的分量,用最大无关组表示其它向量【例5】 求向量组,的秩和一个最大无关组.解: (1) 当且时,故向量组的秩为3,且是一个最大无关组;(2) 当时,故向量组的秩为3,且是一个最大无关组;(3) 当时,若,则,此时向量组的秩为2,且是一个最大无关组.若,则,此时向量组的秩为3,且是一个最大无关组.(2)行向量列变换同理, 也可以用向量组中各向量为行向量组成矩阵(即列向量的转置矩阵), 通过做初等列变换来求向量组的最大无关组。【例6】 求向量组,的一个最大无关组.解:以给定向量为行向量作成矩阵A,用初等列变换将A化为行最简形: (行向量列变换)由于的第1,2,4个行向量构成的向量组线性无关,故是向量组的一个最大无关组.方法3 线性相关法 (了解)若非零向量组A:a1, a2, an线性无关,则A的最大无关组就是a1, a2, an 若非零向量组A线性相关,则A中必有最大无关组二、对于抽象的向量组,求秩与最大无关组常利用一些有关的结论,如:1、若向量组()可由向量组()线性表示,则()的秩不超过()的秩2、等价向量组有相同的秩3、秩为的向量组中任意个线性无关的向量都是该向量组的最大无关组【例7】 设向量组的秩为.又设,求向量组的秩.解 法1: 由于,且,所以,故向量组与等价,从而的秩为.解法2: 将看做列向量,则有,其中 可求得0,即可逆,从而可由线性表示,由已知可由线性表示,故这两个向量组等价,即它们有相同的秩.【例7】设向量组():和向量组():的秩分别为和,而向量组():的秩为.证明:.证: 若和中至少有一个为零,显然有,结论成立.若和都不为零,不妨设向量组()的最大无关组为,向量组()的最大无关组为,由于向量组可以由它的最大无关组线性表示,所以向量组()可以由,线性表示,故:的秩专心-专注-专业

    注意事项

    本文(求向量组的秩与极大无关组(修改整理)(共7页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开