任意角的三角函数导学案(共15页).doc
精选优质文档-倾情为你奉上课题:3.2.1 任意角的三角函数(第一课时)一 教学目标 1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角终边上一点,会求角的各三角函数值.二 教学重难点:重点: 任意角的正弦、余弦、正切的定义。难点: 任意角的三角函数不同的定义方法;已知角终边上一点,会求角的各三角函数值. 三 复习回顾:复习1:用弧度制写出终边在下列位置的角的集合.(1)坐标轴上; (2)第二、四象限.复习2:锐角的三角函数如何定义?在初中,我们如果要求一个锐角的三角函数值,经常把这个角放到一个直角三角形中求其比值,从而得到锐角三角函数的值。那么,你能用直角坐标系中角的终边上的点的坐标更方便的去求一个锐角的三角函数值吗?我们可以采用以下方法:如图,设锐角的顶点与原点重合,始边与轴的非负半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离. 过作轴的垂线,垂足为,则线段的长度为,线段的长度为.可得:; = ,= .四、新课学习:知识点1:三角函数的定义认真阅读教材P11-P12,领会下面的内容:由相似三角形的知识,对于确定的角,这三个比值不会随点P在的终边上的位置的改变而改变,因此我们可以将点P取在使线段OP的长为r=1的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示的锐角三角函数的值为:_;_;_问题:上述锐角的三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢? 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值.注:单位圆:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆为单位圆.上述的点P就是的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。那么我们可以用同样的方法得到任意角的三角函数值。如图,设是一个任意角,它的终边与单位圆交于点,那么:(1)y叫做的正弦(sine),记做;(2)x叫做的余弦(cossine),记做;(3)叫做的正切(tangent),记做.即:,.练习:角与单位圆的交点坐标为 ,则sin= ,cos= ,tan= .注:1)当时,的终边在y轴上,终边上任意一点的横坐标都等于0,所以无意义.2)三角函数的定义域:函数定义域确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标上时,点P的坐标中必有一个为0.3)由于角的集合与实数集之间可以建立一一对应关系,因而三角函数可以看成是自变量为实数的函数,正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数,我们将它们统称为三角函数。探究:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?根据相似三角形的性质,在直角坐标系中,设是一个任意角,终边上任意一点(除了原点)的坐标为,它与原点的距离为,则:;=; =.注意:一个角的三角函数值只与这个角的终边的位置有关,而与点的选取无关。 为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为点的理想位置。典型例题:例:求角的正弦、余弦和正切值变式练习1 求角的正弦、余弦和正切值小结:作角终边求角终边与单位圆的交点利用三角函数定义来求,或在角的终边上找一个容易找到的点,利用,=, =求三角函数值.2、求角的正弦、余弦和正切值例:已知角的终边经过点P(4,3),求sin、cos、的值;练习:已知角的终边经过点P(-4,2),求sin、cos、的值;方法总结:首先判断角的终边是否在单位圆上,再确定做题的方法。例:已知角的终边经过点P(4a,3a)(a0),求2sin+cos的值;例:已知角的终边在直线y=-3x上,求sin,cos,tan的值。当堂检测1. ( ). A. 1 B. C. D. 2. ( ). A. B. C. D. 3. 如果角的顶点在原点,始边在x轴的正半轴重合,终边在函数的图象上,那么的值为( ). A. 5 B. 5 C. D. 4. .5. 已知点在角的终边上,则= .课后作业:(一)选择题1、已知角的终边过点P(1,2),cos的值为 ( ) A B C D2、是第二象限角,P(x, ) 为其终边上一点,且cos=x,则sin的值为 ( )A B C D二填空题3、角的终边上有一点P(m,5),且,则sin+cos=_4、已知角的终边在直线y = x 上,则sin= ;= 三 解答题5、已知角终边上一点P与x轴的距离和与y轴的距离之比为34(且均不为零),求2sin+cos的值知识点二:任意角的三角函数值在各象限内的符号:由于,所以任意角的三角函数的符号取决于点P所在的象限当角的终边在第一象限时,点P在第一象限,所以;当角的终边在第二象限时,点P在第二象限,所以;当角的终边在第三象限时,点P在第三象限,所以;当角的终边在第四象限时,点P在第四象限,所以全正正切正余弦正正弦正xyo任意角的三角函数符号的记忆方法:典型例题:例:判定下列各角的各三角函数符号:(1)4327 (2 分析 关键是判定角所在的象限练习:判断下列三角函数值的符号。例:根据条件且,确定是第几象限的角.练习:练习:书第15页练习练习:请你求下列各角的三角函数值并背会:练习:求下列三角函数的值:例:求下列各式的值:(1);(2).巩固性练习1计算:2计算:当堂检测:1、判别下列各三角函数值的符号:1)sin250° 2)cos() 3)tan(666°36) 4)tan 5)sin 6)cos1020°2、根据下列已知,判别所在象限:1)sin>0且tan<0 、 tan×cos<03、求下列各角的三角函数的值(正弦、余弦、正切). 1)750° 2) 3) 4)1020°4、求函数的值域.变式:求的值域.知识点三:诱导公式一根据三角函数的定义知,角的三角函数值是由角的终边位置确定的,所以终边相同的角的同一三角函数的值相等,即: 其中 其中。 注:作用:把求任意角的三角函数值转化为求0到2(0°360°)角的三角函数值。典型例题:例:判断下列各式的符号:例:求值:例:计算当堂检测:2、 D3、 B知识点四:三角函数线P设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交于,过作轴的垂线,垂足为,根据三角函数的定义,我们有:探究:为了去掉上述等式中的绝对值号,我们可以给线段规定一个适当的方向,使它们的取值与点的坐标一致,由于直角坐标系内的点的坐标与坐标轴的方向有关,因此一个自然的想法是以坐标轴的方向来规定线段的方向,以使它们的取值与点的坐标联系起来。当角的终边不在坐标轴上时,以O为始点,M为终点,规定:当线段OM与x轴同向时,OM的方向为正,且有正值x;当线段OM与x轴反向时,OM的方向为负,且有负值x,其中x为点P的横坐标,这样无论哪一种情况都有OM=x=cos同理,当角的终边不在坐标轴上时,以M为始点,P为终点,规定:当线段MP与y轴同向时,MP的方向为正,且有正值y;当线段MP与y轴反向时,MP的方向为负,且有负值y,其中y为点P的横坐标,这样无论哪一种情况都有MP=y=sin注:有向线段:带有方向的线段叫做有向线段。探究:那么如何用有向线段来表示角的正切呢?我们可以过点作单位圆的切线,这条切线必然平行于y轴,设它与角的终边或其反向延长线交与点.则,我们就分别称有向线段为正弦线、余弦线、正切线,统称为三角函数线。()()()()总结:三角函数线的作法设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有, ,注:(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。(3)三条有向线段的正负:三条有向线段凡与x轴或y轴同向的为正值,与x轴或y轴反向的为负值。(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。练习:书第17页第2题。典型例题:例:作出下列各角的正弦线、余弦线、正切线。例:比较大小:例:利用单位圆写出符合下列条件的角x的范围: 1) sinx=; 2)tanx; 3)思考:已知:例:解不等式:sinx>cosx呢?当堂检测:1、作出下列各角的正弦线、余弦线、正切线。(1); (2); (3); (4)3、 利用单位圆写出符合下列条件的角x的范围 5、求满足下列条件的角的范围:(1); (2)6、求证:。知识点五:同角三角函数的基本关系推导:以正弦线、余弦线和半径三者的长构成直角三角形,而且,由勾股定理有:即,根据三角函数的定义,当时,有,讨论几个问题:A.上述两个关系式,在一些什么情况下成立?B.“sincos1”对吗?C. 同角三角函数关系式可以解决哪些问题?(求值:已知一个角的三角函数值,求这个角的其他三角函数的值; 化简;证明)D.从上面两个公式,你还能推导出同角三角函数的其它关系吗?同角三角函数的基本关系式的主要应用是,已知一个角的三角函数值,求此角的其它三角函数值。在运用平方关系解题时,要根据已知角的范围和三角函数的取值,尽可能地压缩角的范围,以便进行定号;在具体求三角函数值时,一般不需用同角三角函数的基本关系式,而是先根据角的范围确定三角函数值的符号,再利用解直角三角形求出此三角函数值的绝对值。典型例题:例:已知cos,求sin,tan的值. 练习:已知sin,求cos,tan的值. 小结:注意符号(象限确定);同角三基本式的运用(分析联系);知一求二.练习: 已知tanm(m0),求sin,cos的值. (分象限讨论) 化简costan. (化简方法:切化弦) 化简下列各式:例:1)已知0<,2) 已知0<,3)已知小结: 给值求值:已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值. 化简的要求(化简后的式子,三角函数的种类最少;分母不含根式;项数最少;能求出值的求出值)例:化简:例:用多种方法证明: 小结方法:由其它等式而转化(先证交叉乘积相等);或证和(差),或证商比较法;直接证明左边等于右边或右边等于左边或可以左右归一。.练习:求证:sinx tanx =tanxsinx.练习: 已知sin=2sin,tan=3tan,求的值. 已知+=1,求sin+cos的值. 小结:注意象限定符号和联系关系式. 灵活运用公式,注意平方关系,切化弦;化繁为简.当堂检测:1. 已知的一个三角函数值,求其它三角函数值:cos; tan44、已知tan,求的其它三角函数的值;求的值.5、化简6、7、8、 已知是第二象限角,且tan(2+)=, 求cos和sin的值. 9、 已知=,求和的值. 10、已知tan=2,求下列各式的值:; .专心-专注-专业