2022年八级下册数学好题难题精选.pdf
八年级下册数学好题难题精选分式:1:如果 abc=1, 求证11aab+11bbc+11cac=1 2:已知a1+b1=)(29ba,则ab+ba等于多少?3:一个圆柱形容器的容积为V 立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管倍的大水管注水。向容器中注满水的全过程共用时间t 分。求两根水管各自注水的速度。4:已知 M 222yxxy、N2222yxyx,用“ +”或“”连结M 、N,有三种不同的形式,M+N 、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2。反比例函数:5: 一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“ E” 图案如图1 所示小矩形的长x( cm)与宽y( cm)之间的函数关系如图2 所示:(1)求y与x之间的函数关系式;(2) “E”图案的面积是多少?( 3)如果小矩形的长是6x12cm,求小矩形宽的范围. 6:是一个反比例函数图象的一部分,点(110)A ,(101)B,是它的两个端点1 1 10 10 A B O x y 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 6 页 - - - - - - - - - - (1)求此函数的解析式,并写出自变量x的取值范围;(2)请你举出一个能用本题的函数关系描述的生活实例三:如图,A和B都与x轴和y轴相切,圆心A和圆心B都在反比例函数1yx的图象上,则图中阴影部分的面积等于 . 四:如图 11,已知正比例函数和反比例函数的图像都经过点M( 2,1-) ,且P(1-, 2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B( 1)写出正比例函数和反比例函数的关系式;( 2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得OBQ与OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;( 3)如图 12,当点Q在第一象限中的双曲线上运动时,作以OP 、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值五:如图,在平面直角坐标系中,直线AB与 Y轴和 X轴分别交于点A、点 8,与反比例函数y 一罟在第一象限的图象交于点c(1 ,6) 、点 D(3,x) 过点 C作 CE上 y 轴于 E,过点 D作 DF上 X轴于 F (1)求 m ,n 的值; (2) 求直线 AB的函数解析式;勾股定理:一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,?西安发现了他的数学专著,其中有一文积求勾股法,它对“三边长为3、4、5 的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积) ,以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”用现在的数学语言表述是: “若直角三角形的三边长分别为3、4、5 的整数倍, ?设其面积为S,则第一步:6Sm ;第二步:m=k;第三步:分别用3、4、5 乘以 k,得三边长”(1)当面积 S等于 150 时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程ABOxy图xyBAOMQP图xyBCAOMPQ精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 6 页 - - - - - - - - - - 二:一张等腰三角形纸片,底边长l5cm,底边上的高长225cm 现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示已知剪得的纸条中有一张是正方形,则这张正方形纸条是( ) A 第 4 张 B第 5 张 C 第 6 张 D 第 7 张三:如图, 甲、乙两楼相距20 米,甲楼高 20 米,小明站在距甲楼10 米的A处目测得点A与甲、乙楼顶BC、刚好在同一直线上,且A与 B相距350米,若小明的身高忽略不计,则乙楼的高度是米答案: 40 米四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世著名的恩施大峡谷()A和世界级自然保护区星斗山()B位于笔直的沪渝高速公路X同侧,50kmABA,、B到直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客小民设计了两种方案,图(1)是方案一的示意图(AP与直线X垂直,垂足为P) ,P到A、B的距离之和1SPAPB,图( 2)是方案二的示意图(点A关 于直线X的对称点是A, 连接BA交直线X于点P) ,P到A、B的距离之和2SPAPB( 1)求1S、2S,并比较它们的大小;( 2)请你说明2SPAPB的值为最小;( 3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30km,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小并求出这个最小值五:已知:如图,在直角梯形ABCD中,ADBC,ABC90,DEAC于点F,交BC于点G,交AB的延长线于点E,且AEAC( 1)求证:BGFG;( 2)若2ADDC,求AB的长B A P X 图( 1)Y X B A Q P O 图( 3)B A P X A图( 2)20乙C B A 甲10?20D C E B G A F 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 6 页 - - - - - - - - - - 四边形:二:如图,已知ABC是等边三角形,D、E分别在边 BC 、AC上,且 CD=CE ,连结 DE并延长至点F,使 EF=AE ,连结 AF、BE和 CF。(1)请在图中找出一对全等三角形,用符号“”表示,并加以证明。(2)判断四边形ABDF是怎样的四边形,并说明理由。(3)若 AB=6 ,BD=2DC ,求四边形ABEF的面积。三:如图,在ABC中,A、B的平分线交于点D,DEAC交BC于点E,DFBC交AC于点F(1)点D是ABC的_心;(2)求证:四边形DECF为菱形四:在矩形ABCD 中,点 E是 AD边上一点,连接BE ,且 ABE 30, BE DE ,连接 BD 点 P从点 E出发沿射线 ED运动,过点P作 PQ BD交直线 BE于点 Q(1) 当点 P在线段 ED上时(如图1) ,求证: BEPD 33PQ ;(2)若 BC6,设 PQ长为 x,以 P、Q 、D三点为顶点所构成的三角形面积为y,求 y 与 x 的函数关系式 (不要求写出自变量x 的取值范围);(3)在的条件下,当点P 运动到线段ED的中点时,连接QC ,过点 P 作 PFQC ,垂足为F,PF交对角线BD于点 G(如图 2) ,求线段 PG的长。五: 如图 , 这是一张等腰梯形纸片, 它的上底长为2, 下底长为 4, 腰长为 2, 这样的纸片共有5 张. 打算用其中的几张来拼成较大的等腰梯形, 那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图, 并写出它们的周长. 4222六:已知 : 如图 , 在矩形 ABCD中,E、F 分别是边BC 、AB上的点 , 且 EF=ED,EF ED.求证 :AE 平分 BAD. ECB精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 6 页 - - - - - - - - - - 七:如图 , 矩形纸片ABCD中,AB=8, 将纸片折叠 , 使顶点B落在边AD的E点上 ,BG=10. (1) 当折痕的另一端F在AB边上时 , 如图 (1). 求EFG的面积 . (2) 当折痕的另一端F在AD边上时 , 如图 (2). 证明四边形BGEF为菱形 , 并求出折痕GF的长 . HABCDEFG八: (1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上(保留作图痕迹)(2)写出你的作法九:如图,P是边长为 1 的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB. (1)求证:PE=PD; PEPD;(2)设AP=x, PBE的面积为y. 求出y关于x的函数关系式,并写出x的取值范围; 当x取何值时,y取得最大值,并求出这个最大值. 十:如图 1,四边形ABCD是正方形,G是CD边上的一个动点( 点G与C 、D不重合 ) ,以CG为一边在正方形ABCD外作正方形CEFG,连结BG ,DE我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:(1)猜想如图1 中线段BG、线段DE的长度关系及所在直线的位置关系;将图 1 中的正方形CEFG绕着点C按顺时针 ( 或逆时针 ) 方向旋转任意角度, 得到如图2、 如图 3 情形请你通过观察、测量等方法判断中得到的结论是否仍然成立, 并选取图2 证明你的判断(2)将原题中正方形改为矩形(如图46) ,且AB=a ,BC=b ,CE=ka , CG=kb (ab,k0) ,第 (1) 题中得到的结论哪些成立,哪些不成立?若成立,以图5 为例简要说明理由图( 2)ABCDEFGH(A)(B)ABCDEFG图( 1)A B C P D E 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 6 页 - - - - - - - - - - ( 3)在第 (2) 题图 5 中,连结DG、BE,且a=3,b=2,k=12,求22BEDG的值数据的分析:一: 4为了帮助贫困失学儿童,某团市委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息捐给贫困失学儿童. 某中学共有学生1200 人,图 1 是该校各年级学生人数比例分布的扇形统计图,图2 是该校学生人均存款情况的条形统计图. ( 1)九年级学生人均存款元;( 2)该校学生人均存款多少元?( 3)已知银行一年期定期存款的年利率是2.25% ( “爱心储蓄”免收利息税),且每 351 元能提供给一位失学儿童一学年的基本费用,那么该校一学年能帮助多少为贫困失学儿童。二:如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图。教练组规定:体能测试成绩70 分以上(包括70 分)为合格。请根据图11 中所提供的信息填写右表:请从下面两个不同的角度对运动员体能测试结果进行判断:依据平均数与成绩合格的次数比较甲和乙,的体能测试成绩较好;依据平均数与中位数比较甲和乙,的体能测试成绩较好。依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好。三:如图所示, A、B两个旅游点从2002 年至 2006 年“五、一”的旅游人数变化情况分别用实线和虚线表示根据图中所示解答以下问题:(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?(2)求 A、B两个旅游点从2002 到 2006 年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;( 3)A旅游点现在的门票价格为每人80 元,为保护旅游点环境和游客的安全, A旅游点的最佳接待人数为4 万人,为控制游客数量,A旅游点决定提高门票价格已知门票价格x(元)与游客人数y(万人)满足函数关系5100 xy若要使 A旅游点的游客人数不超过4 万人,则门票价格至少应提高多少?平均数中位数体能测试成绩合格次数甲65 乙60 2002 2003 2004 2005 2006 年6 5 4 3 2 1 万人A B 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 6 页 - - - - - - - - - -