导数的综合应用一课件.pptx
题型一题型一 函数的极值与导数函数的极值与导数 【例例1 1】已知函数已知函数f f( (x x)=)=x x3 3+ +mxmx2 2+ +nxnx-2-2的图象过点的图象过点(-1, (-1, -6), -6),且函数且函数g g( (x x)=)=f f(x x)+6)+6x x的图象关于的图象关于y y轴对称轴对称. . (1) (1)求求m m、n n的值及函数的值及函数y y= =f f( (x x) )的单调区间的单调区间; ; (2) (2)若若a a0,0,求函数求函数y y= =f f( (x x) )在区间在区间( (a a-1,-1,a a+1)+1)内的极内的极 值值. . (1)(1)由由f f( (x x) )过点过点(-1,-6)(-1,-6)及及g g( (x x) )图象关图象关 于于y y轴对称可求轴对称可求m m, ,n n. .由由f f(x x)0)0及及f f(x x)0)0)0得得x x22或或x x0,0,故故f f( (x x) )的单调递增区间是的单调递增区间是(-,0)(-,0)和和(2,+);(2,+);由由f f(x x)0,)0,得得00 x x2,2,故故f f( (x x) )的单调递减区间是的单调递减区间是(0,2). (0,2). , 03262m(2)(2)由由(1)(1)得得f f(x x)=3)=3x x( (x x-2),-2),令令f f(x x)=0)=0得得x x=0=0或或x x=2.=2.当当x x变化时变化时, ,f f(x x) )、f f( (x x) )的变化情况如下表的变化情况如下表: : 由此可得由此可得: :当当00a a11时时, ,f f( (x x) )在在( (a a-1,-1,a a+1)+1)内有极大值内有极大值f f(0)=-2,(0)=-2,无无 极小值极小值; ;当当a a=1=1时时, ,f f( (x x) )在在( (a a-1,-1,a a+1)+1)内无极值内无极值; ; x x (-,0) (-,0) 0 0 (0,2) (0,2) 2 2 (2,+) (2,+) f f(x x) ) + +0 0- -0 0+ +f f( (x x) ) 极大值极大值 极小值极小值 当当11a a33时时, ,f f( (x x) )在在( (a a-1,-1,a a+1)+1)内有极小值内有极小值f f(2)=-6,(2)=-6,无无 极大值极大值; ;当当a a33时时, ,f f( (x x) )在在( (a a-1,-1,a a+1)+1)内无极值内无极值. .综上得综上得, ,当当00a a11时时, ,f f( (x x) )有极大值有极大值-2,-2,无极小值无极小值; ;当当11a a31,1, 当当a a00时时, ,由由f f(x x)=0,)=0,得得 当当x x(1,(1,x x1 1) )时时, ,f f(x x)0,)0,)0,f f( (x x) )单调递增单调递增. . )ln()()(1112xaxxf.)()(-2)(),ln()()(32211111xxaxfxaxxf所以所以因为因为.)()()(,321211121121xxxxxaxfaxax此时此时题型二函数的最值与导数题型二函数的最值与导数【例例2 2】已知函数已知函数f f( (x x) )axax3 36 6axax2 2b b, ,问是否存在实问是否存在实 数数a a、b b使使f f( (x x) )在在 1 1,22上取得最大值上取得最大值3 3,最小值,最小值 29,29,若存在,求出若存在,求出a a、b b的值;若不存在,请说明的值;若不存在,请说明 理由理由 (1)(1)研究函数研究函数f f( (x x) )在在 1,21,2上的单调性上的单调性; ; (2 (2) )确定确定f f( (x x) )在在 1,21,2上的最大、最小值;上的最大、最小值; (3)(3)列方程组求列方程组求a a、b b. . 解解由由f f( (x x) )axax3 36 6axax2 2b b得得f f(x x) )3 3axax2 21212axax 3 3axax( (x x4)4) 当当a a0 0时时, ,f f(x x) )0,0,f f( (x x) )b b不能使不能使f f( (x x) )在在 1,2 1,2 上取最大值上取最大值3,3,最小值最小值29.29.思维启迪思维启迪当当a a00时,令时,令f f(x x) )0 0,得,得x x1 10 0,x x2 24 4在区间在区间 1,21,2上上, ,当当a a0,0,令令f f(x x) )0 0得得x x1 10,0,x x2 24 4在区间在区间 1,21,2上上, ,x x1 1( (1,0)1,0)0 0(0,2)(0,2)2 2f f(x x) )0 0f f( (x x) )7 7a ab b极小值极小值b b1616a ab b).(ln222 .eln(e),)(min122ax如图如图