欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    函数的单调性与最值讲义(共9页).doc

    • 资源ID:13346395       资源大小:1.26MB        全文页数:9页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    函数的单调性与最值讲义(共9页).doc

    精选优质文档-倾情为你奉上函数的单调性讲义知识点一:函数单调性(1)相关概念增函数:一般地,设函数的定义域为,如果对于属于定义域内某个区间上任意两个自变量的值,当,都有,那么就说在这个区间上是增函数,如下图(1);用数学符号表示:是增函数.减函数:一般地,设函数的定义域为,如果对于属于定义域内某个区间上任意两个自变量的值,当,都有,那么就说在这个区间上是减函数,如下图(2).用数学符号表示:是减函数. 单调性:如果函数在某个区间是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性.单调区间:函数在某个区间上具有单调性,则这一区间就叫做函数的单调区间.(2) 对于函数单调性的定义的理解,要注意以下三点:单调性是与“区间”紧密相关的概念,一个函数在不同的区间上可以有不同的单调性;单调性是函数在某一区间上的“整体”性质,因此定义中的具有任意性,不能用特殊值代替.由于定义都是充要性命题,因此由是增(减)函数,且,这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.知识点二:函数单调性的判定方法(常用的)(1) 定义法(基本法);取值:任取,且;作差:;变形:通常是因式分解或配方;定号:即判断差的正负;下结论:即指出函数在给定区间上的单调性.例:判断函数在(1,+)上的单调性变式训练:证明函数在上是减函数.(2) 利用已知函数的单调性;在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知的单调性,因此掌握并熟记一次函数、二次函数、幂函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程. 如果函数在某个区间上是增函数或是减函数,那么就说函数在这一区间具有(严格的)单调性,区间叫做的单调区间.的单调性:增函数,减函数;的单调性:减区间;增区间;的单调性:,减区间,增区间;,增区间,减区间;在区间上是增(减)函数,则时,在上是增(减)函数;时则相反;若、是区间上的增(减)函数,则在区间上是增(减)函数;若且在区间上是增(减)函数,则在上是减(增)函数,在上是增(减)函数;轴(与轴垂直)对称图形的函数在它们的对称区间上的单调性相反,中心对称图形的函数在它们的对称区间上单调性相同,例如求下列函数的单调区间:,.(3) 利用函数的图像;函数y|x22x3|的单调增区间是_【解析】y|x22x3|(x1)24|,作出该函数的图像(如图)由图像可知,其增区间为1,1和3,)(4) 依据一些常用结论及复合函数单调性的判定方法;两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数;奇函数在对称的两个区间上有相同的单调性;偶函数在对称的两个区间上有相反的单调性;互为反函数的两个函数有相同的单调性;如果在区间上是增(减)函数,那么在区间的任一子区间上也是增(减)函数;如果单调性相同,那么是增函数;如果单调性相反,那么是减函数.对于复合函数的单调性,列出下表以助记忆.上述规律可概括为“同性则增,异性则减”例:函数的单调减区间是 ( )A. B. C. D.(5) 求导(以后会学到).知识点三:函数单调性的应用(1) 利用函数的单调性可以比较函数值的大小;例:已知对称轴为 ,比较、 、 的大小。 (2) 利用函数的单调性求参数的取值范围;例:已知在 上是减函数,求实数的取值范围。变式训练:函数yf(x)在R上为增函数,且f(2m)f(m9),则实数m的取值范围是()A(,3) B(0,)C(3,) D(,3)(3,)(3) 求某些函数的值域或最值;直接法:利用常见函数的值域来求一次函数y=ax+b(a0)的定义域为R,值域为R;反比例函数的定义域为x|x0,值域为y|y0;二次函数的定义域为R,当a>0时,值域为;当a<0时,值域为。配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;分式转化法(或改为“分离常数法”)换元法:通过变量代换转化为能求值域的函数,化归思想;三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;基本不等式法:转化成型如:,利用平均值不等式公式来求值域;单调性法:函数为单调函数,可根据函数的单调性求值域。数形结合:根据函数的几何图形,利用数型结合的方法来求值域。例1.求下列函数的值域:(1);(2);(3);(4);(5);(6);(7);(8);(9)。解:(1)(配方法),的值域为。改题:求函数,的值域。(利用函数的单调性)函数在上单调增,当时,原函数有最小值为;当时,原函数有最大值为。函数,的值域为。(2)求复合函数的值域:设(),则原函数可化为。又,故,的值域为。(3)(法一)反函数法:的反函数为,其定义域为,原函数的值域为。(法二)分离变量法:,函数的值域为。(4)换元法(代数换元法):设,则,原函数可化为,原函数值域为。注:总结型值域,变形:或(5)三角换元法:,设,则,原函数的值域为。(6)数形结合法:,函数值域为。(7)判别式法:恒成立,函数的定义域为。由得: 当即时,即,当即时,时方程恒有实根,且,原函数的值域为。(8),当且仅当时,即时等号成立。,原函数的值域为。(9)(法一)方程法:原函数可化为:,(其中),原函数的值域为。点评:上面讨论了用初等方法求函数值域的一些常见类型与方法,在现行的中学数学要求中,求值域要求不高,要求较高的是求函数的最大与最小值,在后面的复习中要作详尽的讨论。章末练习:一、选择题1下列说法中,正确的有()若任意x1,x2A,当x1<x2时,>0,则yf(x)在A上是增函数;函数yx2在R上是增函数;函数y在定义域上是增函数;函数y的单调区间是(,0)(0,)A0个B1个C2个D3个2下列函数中,在区间(0,1)上是增函数的是()Ay|x| By3xCy Dyx243已知四个函数的图像如下图所示,其中在定义域内具有单调性的函数是()4函数yf(x)在R上为增函数,且f(2m)f(m9),则实数m的取值范围是()A(,3) B(0,)C(3,) D(,3)(3,)5(2013·洛阳高一检测)函数f(x)4x2mx5在区间2,)上是增函数,则有()Af(1)25 Bf(1)25Cf(1)25 Df(1)>25二、填空题6已知f(x)则f(x)的单调增区间是_7若函数f(x)2x2mx3在(,2上为减函数,在2,)上为增函数,则f(1)_.8函数y|x22x3|的单调增区间是_三、解答题9求证:函数f(x)1在区间(0,)上是单调增函数10(2013·宁德检测)定义在(1,1)上的函数f(x)满足f(x)f(x),且f(1a)f(12a)<0.若f(x)是(1,1)上的减函数,求实数a的取值范围11(2013·福州检测)已知函数yf(x)对任意实数x,y都有f(xy)f(x)f(y)1,并且当x>0时,f(x)>1.求证:f(x)在 R上是增加的专心-专注-专业

    注意事项

    本文(函数的单调性与最值讲义(共9页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开