欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    导数高考真题2及答案(共66页).doc

    • 资源ID:13354645       资源大小:784.50KB        全文页数:69页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    导数高考真题2及答案(共66页).doc

    精选优质文档-倾情为你奉上绝密启用前2018年09月03日一中的高中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第卷(选择题)请点击修改第I卷的文字说明 评卷人 得 分 一选择题(共5小题)1设函数f(x)是奇函数f(x)(xR)的导函数,f(1)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,+)C(,1)(1,0)D(0,1)(1,+)2设f(x)=xsinx,则f(x)()A既是奇函数又是减函数B既是奇函数又是增函数C是有零点的减函数D是没有零点的奇函数3若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是()ABCD4设函数f(x)=ln(1+|x|),则使得f(x)f(2x1)成立的x的取值范围是()A(,)(1,+)B(,1)C()D(,)5设函数f(x)=ex(2x1)ax+a,其中a1,若存在唯一的整数x0使得f(x0)0,则a的取值范围是()A)B)C)D)第卷(非选择题)请点击修改第卷的文字说明 评卷人 得 分 二填空题(共8小题)6函数y=xex在其极值点处的切线方程为 7设曲线y=ex在点(0,1)处的切线与曲线y=(x0)上点P的切线垂直,则P的坐标为 8曲线y=xex在点(0,0)处的切线方程为 9已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= 10曲线y=x2与y=x所围成的封闭图形的面积为 11已知函数f(x)=axlnx,x(0,+),其中a为实数,f(x)为f(x)的导函数,若f(1)=3,则a的值为 12如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于 13已知函数f(x)=ax3+x+1的图象在点(1,f(1)处的切线过点(2,7),则a= 评卷人 得 分 三解答题(共37小题)14设f(x)=xlnxax2+(2a1)x,aR(1)令g(x)=f(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围15设函数f(x)=x3+ax2+bx+c(1)求曲线y=f(x)在点(0,f(0)处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a23b0是f(x)有三个不同零点的必要而不充分条件16已知函数f(x)=(x+1)lnxa(x1)(I)当a=4时,求曲线y=f(x)在(1,f(1)处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围17设函数f(x)=ax2alnx,其中aR()讨论f(x)的单调性;()确定a的所有可能取值,使得f(x)e1x在区间(1,+)内恒成立(e=2.718为自然对数的底数)18设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,()求a,b的值;()求f(x)的单调区间19设函数f(x)=x3axb,xR,其中a,bR(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1x0,求证:x1+2x0=0;(3)设a0,函数g(x)=|f(x)|,求证:g(x)在区间1,1上的最大值不小于20设函数f(x)=acos2x+(a1)(cosx+1),其中a0,记|f(x)|的最大值为A()求f(x);()求A;()证明:|f(x)|2A21已知函数f(x)=(x2)ex+a(x1)2有两个零点()求a的取值范围;()设x1,x2是f(x)的两个零点,证明:x1+x2222已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立23已知函数f(x)=(x2)ex+a(x1)2()讨论f(x)的单调性;()若f(x)有两个零点,求a的取值范围24设函数f(x)=ax2alnx,g(x)=,其中aR,e=2.718为自然对数的底数(1)讨论f(x)的单调性;(2)证明:当x1时,g(x)0;(3)确定a的所有可能取值,使得f(x)g(x)在区间(1,+)内恒成立25设函数f(x)=(x1)3axb,xR,其中a,bR(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1x0,求证:x1+2x0=3;(3)设a0,函数g(x)=|f(x)|,求证:g(x)在区间0,2上的最大值不小于26()讨论函数f(x)=ex的单调性,并证明当x0时,(x2)ex+x+20;()证明:当a0,1)时,函数g(x)=(x0)有最小值设g(x)的最小值为h(a),求函数h(a)的值域27设函数f(x)=+,当x=1时f(x)取得极值()求a;()求f(x)的单调区间28设函数f(x)=(x+a)lnx,g(x)=已知曲线y=f(x)在点(1,f(1)处的切线与直线2xy=0平行()求a的值;()是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;()设函数m(x)=minf(x),g(x)(minp,q表示p,q中的较小值),求m(x)的最大值29已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a(1,3),判断函数f(x)在1,2上的单调性,并说明理由30已知函数f(x)=x3+ax2+b(a,bR)(1)试讨论f(x)的单调性;(2)若b=ca(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(,3)(1,)(,+),求c的值31设nN*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标()求数列xn的通项公式;()记Tn=x12x32x2n12,证明:Tn32已知函数f(x)=(a0,r0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+)内的极值33设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x21,1,都有|f(x1)f(x2)|e1,求m的取值范围34设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围35已知函数f(x)=lnx()求函数f(x)的单调增区间;()证明;当x1时,f(x)x1;()确定实数k的所有可能取值,使得存在x01,当x(1,x0)时,恒有f(x)k(x1)36已知函数f(x)=ax3+x2(aR)在x=处取得极值()确定a的值;()若g(x)=f(x)ex,讨论g(x)的单调性37设函数f(x)=e2xalnx()讨论f(x)的导函数f(x)零点的个数;()证明:当a0时,f(x)2a+aln38已知函数f(x)=2(x+a)lnx+x22ax2a2+a,其中a0()设g(x)是f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0在区间(1,+)内恒成立,且f(x)=0在区间(1,+)内有唯一解39设函数f(x)=(aR)()若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1)处的切线方程;()若f(x)在3,+)上为减函数,求a的取值范围40已知函数f(x)=ln,()求曲线y=f(x)在点(0,f(0)处的切线方程;()求证,当x(0,1)时,f(x);()设实数k使得f(x)对x(0,1)恒成立,求k的最大值41已知函数f(x)=x3+ax+,g(x)=lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用minm,n表示m,n中的最小值,设函数h(x)=minf(x),g(x)(x0),讨论h(x)零点的个数42已知函数f(x)=4xx4,xR()求f(x)的单调区间;()设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)g(x);()若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1x2,求证:x2x1+443设a1,函数f(x)=(1+x2)exa(1)求f(x)的单调区间;(2)证明f(x)在(,+)上仅有一个零点;(3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m144已知函数f(x)=nxxn,xR,其中nN,且n2()讨论f(x)的单调性;()设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)g(x);()若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2x1|+245设函数f(x)=klnx,k0(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点46设 a为实数,函数 f(x)=(xa)2+|xa|a(a1)(1)若f(0)1,求a的取值范围;(2)讨论 f(x)的单调性;(3)当a2 时,讨论f(x)+ 在区间 (0,+)内的零点个数47已知函数f(x)=ln(1+x),g(x)=kx,(kR)(1)证明:当x0时,f(x)x;(2)证明:当k1时,存在x00,使得对任意x(0,x0),恒有f(x)g(x);(3)确定k的所有可能取值,使得存在t0,对任意的x(0,t),恒有|f(x)g(x)|x248已知函数f(x)=2xlnx+x22ax+a2,其中a0()设g(x)是f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(1,+)内有唯一解49已知a0,函数f(x)=eaxsinx(x0,+)记xn为f(x)的从小到大的第n(nN*)个极值点证明:()数列f(xn)是等比数列;()若a,则对一切nN*,xn|f(xn)|恒成立50设函数f(x)=ln(x+1)+a(x2x),其中aR,()讨论函数f(x)极值点的个数,并说明理由;()若x0,f(x)0成立,求a的取值范围专心-专注-专业2018年09月03日一中的高中数学组卷参考答案与试题解析一选择题(共5小题)1【分析】由已知当x0时总有xf(x)f(x)0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(,0)(0,+)上的偶函数,根据函数g(x)在(0,+)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)0等价于xg(x)0,数形结合解不等式组即可【解答】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)成立,即当x0时,g(x)恒小于0,当x0时,函数g(x)=为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数又g(1)=0,函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)0xg(x)0或,0x1或x1故选:A【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题2【分析】利用函数的奇偶性的定义判断f(x)为奇函数,再利用导数研究函数的单调性,从而得出结论【解答】解:由于f(x)=xsinx的定义域为R,且满足f(x)=x+sinx=f(x),可得f(x)为奇函数再根据f(x)=1cosx0,可得f(x)为增函数,故选:B【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题3【分析】根据导数的概念得出k1,用x=代入可判断出f(),即可判断答案【解答】解;f(0)=f(x)k1,k1,即k1,当x=时,f()+1×k=,即f()1=故f(),所以f(),一定出错,另解:设g(x)=f(x)kx+1,g(0)=0,且g(x)=f(x)k0,g(x)在R上递增,k1,对选项一一判断,可得C错故选:C【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题4【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论【解答】解:函数f(x)=ln(1+|x|)为偶函数,且在x0时,f(x)=ln(1+x),导数为f(x)=+0,即有函数f(x)在0,+)单调递增,f(x)f(2x1)等价为f(|x|)f(|2x1|),即|x|2x1|,平方得3x24x+10,解得:x1,所求x的取值范围是(,1)故选:B【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键5【分析】设g(x)=ex(2x1),y=axa,问题转化为存在唯一的整数x0使得g(x0)在直线y=axa的下方,求导数可得函数的极值,数形结合可得ag(0)=1且g(1)=3e1aa,解关于a的不等式组可得【解答】解:设g(x)=ex(2x1),y=axa,由题意知存在唯一的整数x0使得g(x0)在直线y=axa的下方,g(x)=ex(2x1)+2ex=ex(2x+1),当x时,g(x)0,当x时,g(x)0,当x=时,g(x)取最小值2,当x=0时,g(0)=1,当x=1时,g(1)=e0,直线y=axa恒过定点(1,0)且斜率为a,故ag(0)=1且g(1)=3e1aa,解得a1故选:D【点评】本题考查导数和极值,涉及数形结合和转化的思想,属中档题二填空题(共8小题)6【分析】求出极值点,再结合导数的几何意义即可求出切线的方程【解答】解:依题解:依题意得y=ex+xex,令y=0,可得x=1,y=因此函数y=xex在其极值点处的切线方程为y=故答案为:y=【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题7【分析】利用y=ex在某点处的切线斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标【解答】解:f'(x)=ex,f'(0)=e0=1y=ex在(0,1)处的切线与y=(x0)上点P的切线垂直点P处的切线斜率为1又y'=,设点P(x0,y0)=1,x0=±1,x0,x0=1y0=1点P(1,1)故答案为:(1,1)【点评】本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中8【分析】利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率,从而问题解决【解答】解:依题解:依题意得y=ex+xex,因此曲线y=xex在x=0处的切线的斜率等于1,所以函数y=xex在点(0,0)处的切线方程为y=x故答案为:y=x【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题9【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据=0得到a的值【解答】解:y=x+lnx的导数为y=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y1=2x2,即y=2x1由于切线与曲线y=ax2+(a+2)x+1相切,故y=ax2+(a+2)x+1可联立y=2x1,得ax2+ax+2=0,又a0,两线相切有一切点,所以有=a28a=0,解得a=8故答案为:8【点评】本题考查导数的运用:求切线方程,主要考查导数的几何意义:函数在某点处的导数即为曲线在该点处的导数,设出切线方程运用两线相切的性质是解题的关键10【分析】先根据题意画出区域,然后依据图形得到积分下限为0,积分上限为1,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可【解答】解:先根据题意画出图形,得到积分上限为1,积分下限为0直线y=x与曲线y=x2所围图形的面积S=01(xx2)dx而01(xx2)dx=()|01=曲边梯形的面积是故答案为:【点评】本题主要考查了学生会求出原函数的能力,以及考查了数形结合的思想,同时会利用定积分求图形面积的能力,解题的关键就是求原函数11【分析】由题意求出f'(x),利用f(1)=3,求a【解答】解:因为f(x)=axlnx,所以f(x)=alnx+ax=alnx+a,又f(1)=3,所以a=3;故答案为:3【点评】本题考查了求导公式的运用;熟练掌握求导公式是关键12【分析】分别求出矩形和阴影部分的面积,利用几何概型公式,解答【解答】解:由已知,矩形的面积为4×(21)=4,阴影部分的面积为=(4x)|=,由几何概型公式可得此点取自阴影部分的概率等于;故答案为:【点评】本题考查了定积分求曲边梯形的面积以及几何概型的运用;关键是求出阴影部分的面积,利用几何概型公式解答13【分析】求出函数的导数,利用切线的方程经过的点求解即可【解答】解:函数f(x)=ax3+x+1的导数为:f(x)=3ax2+1,f(1)=3a+1,而f(1)=a+2,切线方程为:ya2=(3a+1)(x1),因为切线方程经过(2,7),所以7a2=(3a+1)(21),解得a=1故答案为:1【点评】本题考查函数的导数的应用,切线方程的求法,考查计算能力三解答题(共37小题)14【分析】(1)求出函数的导数,通过讨论a的范围,求出函数g(x)的单调区间即可;(2)通过讨论a的范围,得到函数f(x)的单调区间,结合函数的极大值,求出a的范围即可【解答】解:(1)由f(x)=ln x2ax+2a,可得g(x)=ln x2ax+2a,x(0,+),所以g(x)=2a=,当a0,x(0,+)时,g(x)0,函数g(x)单调递增;当a0,x(0,)时,g(x)0,函数g(x)单调递增,x(,+)时,g(x)0,函数g(x)单调递减所以当a0时,g(x)的单调增区间为(0,+);当a0时,g(x)的单调增区间为(0,),单调减区间为(,+)(6分)(2)由(1)知,f(1)=0当0a时,1,由(1)知f(x)在(0,)内单调递增,可得当x(0,1)时,f(x)0,当x(1,)时,f(x)0所以f(x)在(0,1)内单调递减,在(1,)内单调递增,所以f(x)在x=1处取得极小值,不合题意当a=时,=1,f(x)在(0,1)内单调递增,在(1,+)内单调递减,所以当x(0,+)时,f(x)0,f(x)单调递减,不合题意当a时,01,f(x)在(0,)上单减,当x(,1)时,f(x)0,f(x)单调递增,当x(1,+)时,f(x)0,f(x)单调递减所以f(x)在x=1处取极大值,符合题意综上可知,正实数a的取值范围为(,+)(12分)【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题15【分析】(1)求出f(x)的导数,求得切线的斜率和切点,进而得到所求切线的方程;(2)由f(x)=0,可得c=x3+4x2+4x,由g(x)=x3+4x2+4x,求得导数,单调区间和极值,由c介于极值之间,解不等式即可得到所求范围;(3)先证若f(x)有三个不同零点,令f(x)=0,可得单调区间有3个,求出导数,由导数的图象与x轴有两个不同的交点,运用判别式大于0,可得a23b0;再由a=b=4,c=0,可得若a23b0,不能推出f(x)有3个零点【解答】解:(1)函数f(x)=x3+ax2+bx+c的导数为f(x)=3x2+2ax+b,可得y=f(x)在点(0,f(0)处的切线斜率为k=f(0)=b,切点为(0,c),可得切线的方程为y=bx+c;(2)设a=b=4,即有f(x)=x3+4x2+4x+c,由f(x)=0,可得c=x3+4x2+4x,由g(x)=x3+4x2+4x的导数g(x)=3x2+8x+4=(x+2)(3x+2),当x或x2时,g(x)0,g(x)递增;当2x时,g(x)0,g(x)递减即有g(x)在x=2处取得极大值,且为0;g(x)在x=处取得极小值,且为由函数f(x)有三个不同零点,可得c0,解得0c,则c的取值范围是(0,);(3)证明:若f(x)有三个不同零点,令f(x)=0,可得f(x)的图象与x轴有三个不同的交点即有f(x)有3个单调区间,即为导数f(x)=3x2+2ax+b的图象与x轴有两个交点,可得0,即4a212b0,即为a23b0;若a23b0,即有导数f(x)=3x2+2ax+b的图象与x轴有两个交点,当c=0,a=b=4时,满足a23b0,即有f(x)=x(x+2)2,图象与x轴交于(0,0),(2,0),则f(x)的零点为2个故a23b0是f(x)有三个不同零点的必要而不充分条件【点评】本题考查导数的运用:求切线的方程和单调区间、极值,考查函数的零点的判断,注意运用导数求得极值,考考查化简整理的能力,属于中档题16【分析】(I)当a=4时,求出曲线y=f(x)在(1,f(1)处的切线的斜率,即可求出切线方程;(II)先求出f(x)f(1)=2a,再结合条件,分类讨论,即可求a的取值范围【解答】解:(I)当a=4时,f(x)=(x+1)lnx4(x1)f(1)=0,即点为(1,0),函数的导数f(x)=lnx+(x+1)4,则f(1)=ln1+24=24=2,即函数的切线斜率k=f(1)=2,则曲线y=f(x)在(1,0)处的切线方程为y=2(x1)=2x+2;(II)f(x)=(x+1)lnxa(x1),f(x)=1+lnxa,f(x)=,x1,f(x)0,f(x)在(1,+)上单调递增,f(x)f(1)=2aa2,f(x)f(1)0,f(x)在(1,+)上单调递增,f(x)f(1)=0,满足题意;a2,存在x0(1,+),f(x0)=0,函数f(x)在(1,x0)上单调递减,在(x0,+)上单调递增,由f(1)=0,可得存在x0(1,+),f(x0)0,不合题意综上所述,a2另解:若当x(1,+)时,f(x)0,可得(x+1)lnxa(x1)0,即为a,由y=的导数为y=,由y=x2lnx的导数为y=1+=0,函数y在x1递增,可得0,则函数y=在x1递增,则=2,可得2恒成立,即有a2【点评】本题主要考查了导数的应用,函数的导数与函数的单调性的关系的应用,导数的几何意义,考查参数范围的求解,考查学生分析解决问题的能力,有难度17【分析】(I)利用导数的运算法则得出f(x),通过对a分类讨论,利用一元二次方程与一元二次不等式的关系即可判断出其单调性;()令g(x)=f(x)+e1x=ax2lnx+e1xa,可得g(1)=0,从而g(1)0,解得得a,又,当a时,F(x)=2a+e1x,可得F(x)在a时恒大于0,即F(x)在x(1,+)单调递增由F(x)F(1)=2a10,可得g(x)也在x(1,+)单调递增,进而利用g(x)g(1)=0,可得g(x)在x(1,+)上恒大于0,综合可得a所有可能取值【解答】解:()由题意,f(x)=2ax=,x0,当a0时,2ax210,f(x)0,f(x)在(0,+)上单调递减当a0时,f(x)=,当x(0,)时,f(x)0,当x(,+)时,f(x)0,故f(x)在(0,)上单调递减,在(,+)上单调递增()原不等式等价于f(x)+e1x0在x(1+)上恒成立,一方面,令g(x)=f(x)+e1x=ax2lnx+e1xa,只需g(x)在x(1+)上恒大于0即可,又g(1)=0,故g(x)在x=1处必大于等于0令F(x)=g(x)=2ax+e1x,g(1)0,可得a另一方面,当a时,F(x)=2a+1+=+e1x,x(1,+),故x3+x20,又e1x0,故F(x)在a时恒大于0当a时,F(x)在x(1,+)单调递增F(x)F(1)=2a10,故g(x)也在x(1,+)单调递增g(x)g(1)=0,即g(x)在x(1,+)上恒大于0综上,a【点评】本题主要考查了利用导数研究函数的单调性,导数在最大值、最小值问题中的应用,考查了计算能力和转化思想,熟练掌握利用导数研究函数的单调性、极值、分类讨论的思想方法等是解题的关键18【分析】()求函数的导数,根据导数的几何意义求出函数的切线斜率以及f(2),建立方程组关系即可求a,b的值;()求函数的导数,利用函数单调性和导数之间的关系即可求f(x)的单调区间【解答】解:()y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,当x=2时,y=2(e1)+4=2e+2,即f(2)=2e+2,同时f(2)=e1,f(x)=xeax+bx,f(x)=eaxxeax+b,则,即a=2,b=e;()a=2,b=e;f(x)=xe2x+ex,f(x)=e2xxe2x+e=(1x)e2x+e=(1x+ex1)e2x,e2x0,1x+ex1与f(x)同号,令g(x)=1x+ex1,则g(x)=1+ex1,由g(x)0,得x1,此时g(x)为减函数,由g(x)0,得x1,此时g(x)为增函数,则当x=1时,g(x)取得极小值也是最小值g(1)=1,则g(x)g(1)=10,故f(x)0,即f(x)的单调区间是(,+),无递减区间【点评】本题主要考查导数的应用,根据导数的几何意义,结合切线斜率建立方程关系以及利用函数单调性和导数之间的关系是解决本题的关键综合性较强19【分析】(1)求出f(x)的导数,讨论a0时f(x)0,f(x)在R上递增;当a0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a0,且x00,由f(x0)=0求出x0,分别代入解析式化简f(x0),f(2x0),化简整理后可得证;(3)设g(x)在区间1,1上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立【解答】解:(1)若f(x)=x3axb,则f(x)=3x2a,分两种情况讨论:、当a0时,有f(x)=3x2a0恒成立,此时f(x)的单调递增区间为(,+),、当a0时,令f(x)=3x2a=0,解得x=或x=,当x或x时,f(x)=3x2a0,f(x)为增函数,当x时,f(x)=3x2a0,f(x)为减函数,故f(x)的增区间为(,),(,+),减区间为(,);(2)若f(x)存在极值点x0,则必有a0,且x00,由题意可得,f(x)=3x2a,则x02=,进而f(x0)=x03ax0b=x0b,又f(2x0)=8x03+2ax0b=x0+2ax0b=f(x0),由题意及()可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1x0,则有x1=2x0,故有x1+2x0=0;()设g(x)在区间1,1上的最大值M,maxx,y表示x、y两个数的最大值,下面分三种情况讨论:当a3时,11,由(I)知f(x)在区间1,1上单调递减,所以f(x)在区间1,1上的取值范围是f(1),f(1),因此M=max|f(1)|,|f(1)|=max|1ab|,|1+ab|=max|a1+b|,|a1b|=,所以M=a1+|b|2当a3时,由()、()知,f(1)=f(),f(1)=,所以f(x)在区间1,1上的取值范围是f(),f(),因此M=max|f()|,|f()|=max|,|=max|,|=,当0a时,由()、()知,f(1)=f(),f(1)=,所以f(x)在区间1,1上的取值范围是f(1),f(1),因此M=max|f(1)|,|f(1)|=max|1+ab|,|1ab|=max|1a+b|,|1ab|=1a+|b|,综上所述,当a0时,g(x)在区间1,1上的最大值不小于【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题20【分析】()根据复合函数的导数公式进行求解即可求f(x);()讨论a的取值,利用分类讨论的思想方法,结合换元法,以及一元二次函数的最值的性质进行求解;()由(I),结合绝对值不等式的性质即可证明:|f(x)|2A【解答】(I)解:f(x)=2asin2x(a1)sinx(II)当a1时,|f(x)|=|acos2x+(a1)(cosx+1)|a|cos2x|+(a1)|(cosx+1)|a|cos2x|+(a1)(|cosx|+1)|a+2(a1)=3a2=f(0),因此A=3a2当0a1时,f(x)=acos2x+(a1)(cosx+1)=2acos2x+(a1)cosx1,令g(t)=2at2+(a1)t1,则A是|g(t)|在1,1上的最大值,g(1)=a,g(1)=3a2,且当t=时,g(t)取得极小值,极小值为g()=1=,(二次函数在对称轴处取得极值)令11,得a(舍)或a当0a时,g(t)在(1,1)内无极值点,|g(1)|=a,|g(1)|=23a,|g(1)|g(1)|,A=23a,当a1时,由g(1)g(1)=2(1a)0,得g(1)g(1)g(),又|g()|g(1)|=0,A=|g()|=,综上,A=(III)证明:由(I)可得:|f(x)|=|2asin2x(a1)sinx|2a+|a1|,当0a时,|f(x)|1+a24a2(23a)=2A,当a1时,A=+1,|f(x)|1+a2A,当a1时,|f(x)|3a16a4=2A,综上:|f(x)|2A【点评】本题主要考查函数的导数以及函数最值的应用,求函数的导数,以及换元法,转化法转化为一元二次函数是解决本题的关键综合性较强,难度较大21【分析】()由函数f(x)=(x2)ex+a(x1

    注意事项

    本文(导数高考真题2及答案(共66页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开