欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    一次函数和几何综合题(共8页).docx

    • 资源ID:13359583       资源大小:154.55KB        全文页数:8页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    一次函数和几何综合题(共8页).docx

    精选优质文档-倾情为你奉上1、 直线与轴、y轴交于A、B两点,C在y轴的负半轴上,且(1)求AC的解析式; (2)在OA的延长线上任取一点P,作PQBP,交直线AC于Q,试探究BP与PQ的数量关系,并证明你的结论。(3)在(2)的前提下,作PMAC于M,BP交AC于N,下面两个结论: 的值不变;的值不变,期中只有一个正确结论,请选择并加以证明。xyoBACPQM2、如图所示,直线L:与轴负半轴、轴正半轴分别交于A、B两点。(1)当OA=OB时,试确定直线L的解析式;(2)在(1)的条件下,如图所示,设Q为AB延长线上一点,作直线OQ,过A、B两点分别作AMOQ于M,BNOQ于N,若AM=4,BN=3,求MN的长。(3)当取不同的值时,点B在轴正半轴上运动,分别以OB、AB为边,点B为直角顶点在第一、二象限内作等腰直角OBF和等腰直角ABE,连EF交轴于P点,如图。问:当点B在 y轴正半轴上运动时,试猜想PB的长是否为定值,若是,请求出其值,若不是,说明理由。 图 图 图3、如图,直线与x轴、y轴分别交于A、B两点,直线与直线关于x轴对称,已知直线的解析式为,(1)求直线的解析式; (2)过A点在ABC的外部作一条直线,过点B作BE于E,过点C作CF于F分别,请画出图形并求证:BECFEF ;(3)ABC沿y轴向下平移,AB边交x轴于点P,过P点的直线与AC边的延长线相交于点Q,与y轴相交与点M,且BPCQ,在ABC平移的过程中,OM为定值;MC为定值。在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值。4、如图,在平面直角坐标系中,A(a,0),B(0,b),且a、b满足.(1)求直线AB的解析式;(2)若点M为直线y=m x上一点,且ABM是以AB为底的等腰直角三角形,求m值;(3)过A点的直线交y轴于负半轴于P,N点的横坐标为,过N点的直线交AP于点M,试证明 的值为定值5、如图,直线AB:分别与x、y轴交于A(6,0)、B两点,过点B的直线交x轴负半轴于C,且.(1)求直线BC的解析式:(2)直线EF:()交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得SEBD=SFBD?若存在,求出k的值;若不存在,说明理由?(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角BPQ,连接QA并延长交轴于点K,当P点运动时,K点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请说明理由。6、如图,直线AB交X轴负半轴于B(m,0),交Y轴负半轴于A(0,m),OCAB于C(,)。(1) 求m的值;(2) 直线AD交OC于D,交轴于E,过B作BFAD于F,若OD=OE,求的值;(3)如图,P为x轴上B点左侧任一点,以AP为边作等腰直角,其中PA=PM,直线MB交y轴于Q,当P在x轴上运动时,线段OQ长是否发生变化?若不变,求其值;若变化,说明理由。7、在平面直角坐标系中,一次函数的图像过点B(,),与x轴交于点A(4,0),与y轴交于点C,与直线交于点P,且PO=PA(1)求a+b的值;(2)求k的值;(3)D为PC上一点,DFx轴于点F,交OP于点E,若DE=2EF,求D点坐标. 8、在直角坐标系中,B、A分别在x,y轴上,B的坐标为(3,0),ABO=30°,AC平分OAB交x轴于C;(1)求C的坐标;(2)若D为AB中点,EDF=60°,证明:CE+CF=OC(3)若D为AB上一点,以D作DEC,使DC=DE,EDC=120°,连BE,试问EBC的度数是否发生变化;若不变,请求值。9、如图,直线AB交x轴正半轴于点A(a,0),交y 轴正半轴于点B(0, b),且a 、b满足 + |4b|=0(1)求A、B两点的坐标;(2)D为OA的中点,连接BD,过点O作OEBD于F,交AB于E,求证BDO=EDA;ABOMPQxy(3)如图,P为x轴上A点右侧任意一点,以BP为边作等腰,其中PB=PM,直线MA交y 轴于点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变,求其值;若变化,求线段OQ的取值范围. ABODEFyx10、如图,平面直角坐标系中,点A、B分别在x、y轴上,点B的坐标为(0,1),BAO=30°(1)求AB的长度;(2)以AB为一边作等边ABE,作OA的垂直平分线MN交AB的垂线AD于点D求证:BD=OE(3) 在(2)的条件下,连结DE交AB于F求证:F为DE的中点一次函数与几何综合题1、 如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E,F分别在AD,AB上,且F点的坐标是(2,4)(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由 2、已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6)(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点(点C不与点O,B重合),作CDy轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);若矩形CDEF的面积为108,求出点C的坐标 3、如图,将边长为4的正方形置于平面直角坐标系第一象限,使AB落在x轴正半轴上,直线 经过点C,与x轴交于点E(1)求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(,0)且与直线y3x平行,将(2)中直线l沿着y轴向上 平移1个单位,交x轴于点M,交直线l1于点N,求NMF的面积 4、如图1,在平面直角坐标系中,直线(m>0)与x轴,y轴分别交于点A,B,过点A作x轴的垂线交直线yx于点D,C点坐标(m,0),连接CD(1)求证:CDAB;(2)连接BC交OD于点H(如图2),求证: 图1 图2 5、如图,在平面直角坐标系中,点A的坐标为(2,0),以OA为边在第四象限内作等边AOB,点C为x轴的正半轴上一动点(OC2),连接BC,以BC为边在第四象限内作等边CBD (1)试问OBC与ABD全等吗?并证明你的结论;(2)直线AD与y轴交于点E,在C点移动的过程中,E点的位置是否发生变化?如果不变求出它的坐标;如果变化,请说明理由 专心-专注-专业

    注意事项

    本文(一次函数和几何综合题(共8页).docx)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开