欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    应变花计算公式(共18页).doc

    • 资源ID:13371998       资源大小:717KB        全文页数:18页
    • 资源格式: DOC        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    应变花计算公式(共18页).doc

    精选优质文档-倾情为你奉上1. 概述(1)平面应变状态:即受力构件表面一点处的应变情况。(2)测试原理:一般最大应变往往发生在受力构件的表面。通常用应变仪测出受力构件表面一点处三个方向的线应变值,然后确定该点处的最大线应变和最小应变及其方程。2. 公式推导: (1)选定坐标系为xoy,如图示(2)设0点处, 为已知。 规定伸长为正,切应变 以xoy直角增大为正。(3)求任意方向, 方向( 规定逆时针方向为正)的线应变 和切应变 (即 直角的改变量)。(4)叠加法:求 方向的线应变 和切应变 由于 而引起ds的长度改变 , 方向(即 方向)的线应变求 的切应变 即 方向的直角改 坐标轴偏转的角度以 代替式(c)中的,求得 坐标轴偏转角度:3. 结论(1)已知 可求得任意方向 的 (2)已知 ,求得 (3)主应变和主应变方向比较上述公式,可见故:4. 应变圆5. 应变的实际测量用解析法或图解法求一点处的主应变时,首先必须已知 ,然而用应变仪直接测量时, 可以测试,但 不易测量。所以,一般是先测出任选三个方向 的线应变 。然后利用一般公式,将 代入得出:联解三式,求出,于是再求出主应变的方向与数值由 式求出 ,当 时 与二、四相限的角度相对应。6. 直角应变花(45°应变花)测量为了简化计算,三个应变选定三个特殊方向测得: ,代入 一般公式求得:故讨论:若 与二、四相限的角度相对应。见P257、7.21题6. 等角应变花测量 一般公式:测定值: 代入式(a)得:主应变方向:故:于是由主应变公式:  ,穿过二,四相限.见P258,7.22题Example 1. 用直角应变花测得一点的三个方向的线应变Find:主应变及其方向Solution:故 过二、四相限。Example2. 若已测得等角应变花三个方向的线                    试求主应变及其方向 Solution:即:                                                                应力测量 (measurement of stress)测量物体由于外因或内在缺陷而变形时,在它内部任一单位截面积上内外两方的相互作用力。应力是不能直接测量的,只能是先测出应变,然后按应力与应变的关系式计算出应力。若主应力方向已知,只要沿着主应力方向测出主应变,就可算出主应力。各种受力情况下的应变值的测量方法见表1。轴向拉伸(或压缩)时,沿轴向力方向粘贴应变片(表l之14),测出应变,按单向虎克定律算出测点的拉(压)应力=E。式中为应变,E为弹性模量。弯曲时在受弯件的上下表面上粘贴应变片(见表1之56),测出应变e,可计算弯曲应力。扭转时沿与圆轴母线成±45。 角的方向贴片(表1之79),测出主应变em,再代入虎克定律公式算出主应力45o ,即得最大剪应力rmax :式中为泊松比。拉(压)、弯曲、扭转,其中两种或三种力的联合作用下,不同测量要求的应变值测量方法分别见表1的1014。主应力方向未知时的应力测量如图1所示。在该测点沿与某坐标轴X夹角分别为1 、2 和3 的3个方向,各粘贴一枚应变片,分别测出3个方向的应变12 和3 根据下式可解出x ,y 和z 再代入下式求出主应变1 、2 和主方向与x轴夹角a:最后,再根据广义虎克定律公式求出主应力1 、2 和Tmax 。实际上为了简化计算,3枚应变片与z轴的夹角a1 、a2 和a3 总是选取特殊角,如0o 、45o 、60o 、90o 和120o 并将3枚应变片的敏感栅制在同一基底上,形成应变花。常用的应变花有直角应变花(00一45。一90。)和等角应变花(O。 一60。 一120o )。不同形式的应变花的计算公式见表2。用应变片测量的应变值一般是很小的,因而电阻值的变化同样是很小的。为此,有必要把应变计连接到一定的测量系统中,以精确测定应变片电阻值的变化。用应变片测量应变的测量系统框图见图2。电阻应变测量法是实验应力分析中应用最广的一种方法。电阻应变测量方法测出的是构件上某一点处的应变,还需通过换算才能得到应力。根据不同的应力状态确定应变片贴片方位,有不同的换算公式。8.7.1  单向应力状态 在杆件受到拉伸(或压缩)情况下,如图8-31所示。此时只有一个主应力s1,它的方向是平行于外加载荷F的方向,所以这个主应力s1的方向是已知的,该方向的应变为el。而垂直于主应力s1方向上的应力虽然为零,但该方向的应变e20,而是e2=-el。由此可知:在单向应力状态下,只要知道应力s1的方向,虽然s1的大小是未知的,可在沿主应力s1的方向上贴一个应变片,通过测得el,就可利用s1=Ee1公式求得s1。8.7.2  主应力方向巳知平面应力状态  平面应力是指构件内的一个点在两个互相垂直的方向上受到拉伸(或压缩)作用而产生的应力状态,如图8-31所示。图中单元体受已知方向的平面应力s1和s2作用,在X和Y方向的应变分别为s1作用:X方向的应变el为s1/EY方向的应变e2为-s1/Es2作用:Y方向的应变e2为e2/EX方向的应变el为-e2/E由此可得X方向的应变和Y方向的应变分别为                                        (8-72)上式变换形式后可得                                                        (8-73)由此可知:在平面应力状态下,若已知主应力s1或s2的方向(s1与s2相互垂直),则只要沿s1和s2方向各贴一片应变片,测得l和2后代入式(8-73),即可求得s1和s2值。8.7.3  主应力方向未知平面应力状态 当平面应力的主应力s1和2的大小及方向都未知时,需对一个测点贴三个不同方向的应变片,测出三个方向的应变,才能确定主应力s1和s2及主方向角q三个未知量。图8-33表示边长为x和y、对角线长为l的矩形单元体。设在平面应力状态下,与主应力方向成q角的任一方向的应变为,即图中对角线长度l的相对变化量。由于主应力sx、sy的作用,该单元体在X、Y方向的伸长量为x、y,如图8-33(a)、(b)所示,该方向的应变为ex=x/x、ey=y/y;在切应力xy作用下,使原直角XOY减小gxy,如图8-33(c)所示,即切应变gxy=x/y。这三个变形引起单元体对角线长度l的变化分别为xcosq、ysinq、ygxy cosq,其应变分别为excos2q、eysin2q、gxysinqcosq。当ex、ey、gxy同时发生时,则对角线的总应变为上述三者之和,可表示为                               (8-74)利用半角公式变换后,上式可写成                                      (8-75)由式 (8-75)可知e与ex、ey、gxy之间的关系。因ex、ey、gxy未知,实际测量时可任选与X轴成q1、q2、q3三个角的方向各贴一个应变片,测得e1、e2、e3连同三个角度代入式(8-75)中可得                             (8-76)由式(8-76)联立方程就可解出ex、ey、gxy。再由ex、ey、gxy可求出主应变e1、e2和主方向与X轴的夹角q,即                                             (8-77)将上式中主应变e1和e2代入式(8-73)中,即可求得主应力。在实际测量中,为简化计算,三个应变片与X轴的夹角q1、q2、q3总是选取特殊角,如0°、45°和90°或0°、60°和120°角,并将三个应变片的丝栅制在同一基底上,形成所谓应变花。图8-34所示是丝式应变花。设应变花与X轴夹角为q1=0°,q2=45°、q3=90°,将此q1、q2、q3值分别代人式(8-76)得                                           (8-78)由式(8-78)可得                                                           (8-79)将式(8-79)代入式(8-77)可得主应变e1、e2和主应变方向角q的计算式为                              (8-80)                                                    (8-81)将式(8-80)代入式(8-81)得应力计算公式为          (8-82)对q1=0°、q2=60°、q3=120°的应变花,主应变e1、e2和主应变方向角及主应力s1和s2计算公式为                  (8-83)                                               (8-84)             (8-85)专心-专注-专业

    注意事项

    本文(应变花计算公式(共18页).doc)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开