排列组合经典练习题含答案(共3页).doc
精选优质文档-倾情为你奉上16个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A40 B50 C60 D702有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A36种 B48种 C72种 D96种 3只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有() A6个 B9个 C18个 D36个4男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有() A2人或3人 B3人或4人 C3人 D4人5某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A45种 B36种 C28种 D25种6某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A24种 B36种 C38种 D108种7已知集合A5,B1,2,C1,3,4,从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A33 B34 C35 D368由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A72 B96 C108 D1449如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A50种 B60种 C120种 D210种10安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有_种(用数字作答) 11今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有_种不同的排法(用数字作答)12将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有_种(用数字作答)13要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有_种不同的种法(用数字作答)14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 A.12种 B.18种 C. 36种 D. 54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种 B. 960种 C. 1008种 D. 1108种 16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是A. 72 B. 96 C.108 D. 144 w_w_w.k*s 5*u.c o*m17. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为 ( ) A.10 B.11 C.12 D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是 A152 B.126 C.90 D.5419. 甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( D )A. 150种 B. 180 种 C. 300种 D. 345种 20. 将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 21. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 3622. 从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位 C A 85 B 56 C 49 D 28 23. 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360 B. 188 C. 216 D. 96 24. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为( )ABCD 25. 甲、乙、丙人站到共有级的台阶上,若每级台阶最多站人,同一级台阶上的人不区分站的位置,则不同的站法种数是 (用数字作答) 26. 锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( )A B C D 27. 将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案有 种(用数字作答)28. 将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()A10种B20种C36种 D52种29. 将5名实习教师分配到高一年级的个班实习,每班至少名,最多名,则不同的分配方案有 ( ) A. 30种 B. 90种 C. 180种 D. 270种30. 某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有 种31. 用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答)32有一排8个发光二极管,每个二极管点亮时可发出红光或绿光,若每次恰有3个二极管点亮,但相邻的两个二极管不能同时点亮,根据这三个点亮的二极管的不同位置和不同颜色来表示不同的信息,求这排二极管能表示的信息种数共有多少种?33按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间346男4女站成一排,求满足下列条件的排法共有多少种?(1)任何2名女生都不相邻有多少种排法?(2)男甲不在首位,男乙不在末位,有多少种排法?(3)男生甲、乙、丙排序一定,有多少种排法?(4)男甲在男乙的左边(不一定相邻)有多少种不同的排法?专心-专注-专业