点到直线的距离公式的七种推导方法(共3页).doc
-
资源ID:13424581
资源大小:248KB
全文页数:3页
- 资源格式: DOC
下载积分:20金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
点到直线的距离公式的七种推导方法(共3页).doc
精选优质文档-倾情为你奉上点到直线的距离公式的七种推导方法已知点 直线求点P到直线 的距离。(因为特殊直线很容易求距离,这里只讨论一般直线)一、 定义法证:根据定义,点P到直线 的距离是点P到直线 的垂线段的长,如图1,设点P到直线的垂线为 ,垂足为Q,由 可知 的斜率为 的方程:与联立方程组解得交点 二、 函数法证:点P到直线 上任意一点的距离的最小值就是点P到直线的距离。在上取任意点 用两点的距离公式有,为了利用条件上式变形一下,配凑系数处理得:当且仅当时取等号所以最小值就是 三、不等式法证:点P到直线 上任意一点Q的距离的最小值就是点P到直线的距离。由柯西不等式:当且仅当时取等号所以最小值就是四、转化法证:设直线 的倾斜角为 过点P作PM 轴交于M 显然所以 易得MPQ (图2)或MPQ(图3)在两种情况下都有所以 五、三角形法证:P作PM 轴交于M,过点P作PN 轴交于N(图4)由解法三知;同理得 在RtMPN中,PQ是斜边上的高六、参数方程法证:过点作直线 交直线于点Q。(如图1)由直线参数方程的几何意义知,将 代入 得整理后得 当 时,我们讨论 与 的倾斜角的关系:当 为锐角时 ()有(图2)当 为钝角时 ()有(图3)得到的结果和上述形式相同,将此结果代入得图五七、向量法证:如图五,设直线的一个法向量,Q直线上任意一点,则。从而点P到直线的距离为:附:方案一:设点P到直线的垂线段为PQ,垂足为Q,由PQ可知,直线PQ的斜率为(A0),根据点斜式写出直线PQ的方程,并由与PQ的方程求出点Q的坐标;由此根据两点距离公式求出PQ,得到点P到直线的距离为d 方案二:设A0,B0,这时与轴、轴都相交,过点P作轴的平行线,交于点;作轴的平行线,交于点,由得.所以,PPSS×由三角形面积公式可知:·SP·PS所以可证明,当A=0时仍适用专心-专注-专业